FixyFPGA: Efficient FPGA Accelerator for Deep Neural Networks with High Element-Wise Sparsity and without External Memory Access

计算机科学 卷积神经网络 现场可编程门阵列 操作数 计算 推论 硬件加速 专用集成电路 计算机硬件 人工智能 计算机工程 并行计算 算法
作者
Jian Meng,Shreyas Kolala Venkataramanaiah,Chuteng Zhou,Patrick Hansen,Paul N. Whatmough,Jae-sun Seo
标识
DOI:10.1109/fpl53798.2021.00010
摘要

Convolutional neural networks (CNNs) have become very popular in real-time computer vision systems. CNNs involve a large amount of computation and storage and typically demand a highly efficient computing platform. Researchers have explored a diverse range of software and hardware optimizations to accelerate CNN inference in recent years. The high power consumption of GPUs and the lack of flexibility with ASIC has promoted interest in FPGAs as a promising platform to efficiently accelerate these CNN inference tasks. Various FPGA-based CNN accelerators have been proposed to low precision weights and high-sparsity in various forms. However, most of the previous work requires off-chip DDR memory to store the parameters and expensive DSP blocks to perform the computation. In this work, we propose the FixyFPGA, a fully on-chip CNN inference accelerator that naturally supports high-sparsity and low-precision computation. In our design, the weights of the trained CNN network are hard-coded into hardware and used as fixed operand for the multiplication. Convolution is performed by streaming the input images to the compute engine in a fully-paralleled, fully-pipelined manner. We analyzed the performance of the proposed scheme with both image classification tasks and object detection tasks based on the low precision, sparse compact CNN models. Compared to prior works, our design achieved 2.34× higher GOPS on ImageNet classification and 3.82× higher frames per second on Pascal VOC object detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助EATING采纳,获得10
刚刚
刚刚
细心天德完成签到,获得积分10
2秒前
友00000发布了新的文献求助10
2秒前
nong12123发布了新的文献求助10
2秒前
3秒前
4秒前
check003完成签到,获得积分10
6秒前
简简完成签到,获得积分10
7秒前
天天快乐应助庐陵流川枫采纳,获得10
8秒前
9秒前
赵雅琼关注了科研通微信公众号
10秒前
yearluren完成签到,获得积分10
10秒前
11秒前
EATING完成签到,获得积分20
13秒前
WYJ完成签到,获得积分10
14秒前
14秒前
Ava应助科研通管家采纳,获得10
14秒前
14秒前
HebingTang应助科研通管家采纳,获得20
14秒前
SciGPT应助科研通管家采纳,获得10
14秒前
慕青应助科研通管家采纳,获得10
14秒前
852应助科研通管家采纳,获得10
15秒前
思源应助科研通管家采纳,获得10
15秒前
英俊的铭应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
传奇3应助吴五五采纳,获得10
16秒前
上官若男应助ZZCrazy采纳,获得10
17秒前
复杂的兔子完成签到,获得积分10
17秒前
完美夏梦完成签到 ,获得积分20
17秒前
破三贼完成签到,获得积分10
18秒前
EATING发布了新的文献求助10
18秒前
YY发布了新的文献求助10
19秒前
Owen应助此时此刻采纳,获得10
20秒前
Hello应助stevben采纳,获得10
20秒前
23秒前
24秒前
灰色白面鸮完成签到,获得积分10
25秒前
秋作完成签到,获得积分10
25秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808902
求助须知:如何正确求助?哪些是违规求助? 3353628
关于积分的说明 10366242
捐赠科研通 3069900
什么是DOI,文献DOI怎么找? 1685835
邀请新用户注册赠送积分活动 810743
科研通“疑难数据库(出版商)”最低求助积分说明 766320