Integrating occurrence data and expert maps for improved species range predictions

计算机科学 航程(航空) 数据挖掘 环境生态位模型 比例(比率) 参数化复杂度 物种分布 机器学习 最大熵原理 专家启发 人工智能 数据科学 生态学 生态位 地理 地图学 栖息地 数学 统计 材料科学 复合材料 生物 算法
作者
Cory Merow,Adam M. Wilson,Walter Jetz
出处
期刊:Global Ecology and Biogeography [Wiley]
卷期号:26 (2): 243-258 被引量:99
标识
DOI:10.1111/geb.12539
摘要

Abstract Aim Knowledge of species geographical distributions is critical for many ecological and evolutionary questions and underpins effective conservation decision‐making, yet it is usually limited in spatial resolution or reliability. Over large spatial extents, range predictions are typically derived from expert knowledge or, increasingly, species distribution models based on individual occurrence records. Expert maps are useful at coarse resolution, where they are suitable for delineating unoccupied regions. In contrast, point records typically provide finer‐scale occurrence information that can be characterized for its environmental association, but usually suffers from observer biases and does not representatively or fully address the geographical or environmental range occupied by a species. Innovation We develop a new modelling methodology to combine the complementary informative attributes of both data types to improve fine‐scale, large‐extent predictions. We use expert delineations to constrain predictions of a species distribution model parameterized with incidental point occurrence records. We introduce a maximum entropy approach for combining the two data types and generalize it to Poisson point process models. We illustrate critical decision making during model construction using two detailed case studies and illustrate features more generally with applications to species with vastly different range and data attributes. Our methods are illustrated in the Supporting Information and with a new R package, bossMaps, that integrates with existing generalized linear modelling and Maxent software. Main conclusions Our modelling strategy flexibly accommodates expert maps with different levels of bias and precision. The approach can also be useful with other coarse sources of spatially explicit information, including habitat associations, elevational bands or vegetation types. The flexible nature of this methodological innovation can support improved characterization of species distributions for a variety of applications and is being implemented as a standard element underpinning integrative species distribution predictions in the Map of Life ( https://mol.org/ ).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
赵燕应助sgr采纳,获得10
刚刚
1秒前
JamesPei应助庾储采纳,获得10
1秒前
1秒前
今后应助小柔采纳,获得10
1秒前
haowent关注了科研通微信公众号
2秒前
奋斗梦旋发布了新的文献求助30
3秒前
3秒前
整齐的冷卉完成签到,获得积分10
3秒前
泡面小猪发布了新的文献求助10
3秒前
岑岑完成签到,获得积分10
4秒前
鞠晓蕾完成签到,获得积分10
4秒前
田庆宇完成签到,获得积分10
4秒前
芷兰丁香发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
狐狸萌萌哒完成签到,获得积分10
4秒前
5秒前
5秒前
梦与叶落发布了新的文献求助10
5秒前
5秒前
5秒前
可爱的函函应助mescal采纳,获得10
6秒前
李健应助曲夜白采纳,获得10
6秒前
青黛发布了新的文献求助10
7秒前
qqa完成签到,获得积分10
7秒前
23211151760应助OO采纳,获得10
7秒前
cjypdf发布了新的文献求助10
8秒前
shchyi完成签到,获得积分10
9秒前
轻轻完成签到,获得积分10
9秒前
小小李发布了新的文献求助10
10秒前
秘密完成签到,获得积分10
12秒前
12秒前
MR_MA应助Jiang采纳,获得10
12秒前
星辰大海应助啦啦采纳,获得50
13秒前
书晗发布了新的文献求助20
13秒前
13秒前
chen应助云ch采纳,获得20
14秒前
香蕉觅云应助北风采纳,获得10
15秒前
充电宝应助spy采纳,获得10
15秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
全球膝关节骨性关节炎市场研究报告 555
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 540
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3887467
求助须知:如何正确求助?哪些是违规求助? 3429745
关于积分的说明 10766769
捐赠科研通 3154538
什么是DOI,文献DOI怎么找? 1741973
邀请新用户注册赠送积分活动 840810
科研通“疑难数据库(出版商)”最低求助积分说明 785624