Integrating occurrence data and expert maps for improved species range predictions

计算机科学 航程(航空) 数据挖掘 环境生态位模型 比例(比率) 参数化复杂度 物种分布 机器学习 最大熵原理 专家启发 人工智能 数据科学 生态学 生态位 地理 地图学 栖息地 数学 统计 材料科学 复合材料 生物 算法
作者
Cory Merow,Adam M. Wilson,Walter Jetz
出处
期刊:Global Ecology and Biogeography [Wiley]
卷期号:26 (2): 243-258 被引量:99
标识
DOI:10.1111/geb.12539
摘要

Abstract Aim Knowledge of species geographical distributions is critical for many ecological and evolutionary questions and underpins effective conservation decision‐making, yet it is usually limited in spatial resolution or reliability. Over large spatial extents, range predictions are typically derived from expert knowledge or, increasingly, species distribution models based on individual occurrence records. Expert maps are useful at coarse resolution, where they are suitable for delineating unoccupied regions. In contrast, point records typically provide finer‐scale occurrence information that can be characterized for its environmental association, but usually suffers from observer biases and does not representatively or fully address the geographical or environmental range occupied by a species. Innovation We develop a new modelling methodology to combine the complementary informative attributes of both data types to improve fine‐scale, large‐extent predictions. We use expert delineations to constrain predictions of a species distribution model parameterized with incidental point occurrence records. We introduce a maximum entropy approach for combining the two data types and generalize it to Poisson point process models. We illustrate critical decision making during model construction using two detailed case studies and illustrate features more generally with applications to species with vastly different range and data attributes. Our methods are illustrated in the Supporting Information and with a new R package, bossMaps, that integrates with existing generalized linear modelling and Maxent software. Main conclusions Our modelling strategy flexibly accommodates expert maps with different levels of bias and precision. The approach can also be useful with other coarse sources of spatially explicit information, including habitat associations, elevational bands or vegetation types. The flexible nature of this methodological innovation can support improved characterization of species distributions for a variety of applications and is being implemented as a standard element underpinning integrative species distribution predictions in the Map of Life ( https://mol.org/ ).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光亮的青文完成签到 ,获得积分10
刚刚
科研通AI2S应助苦酷采纳,获得10
刚刚
小李完成签到,获得积分10
1秒前
1秒前
1秒前
烟花应助刀刀采纳,获得10
1秒前
as发布了新的文献求助10
3秒前
kiki完成签到,获得积分10
3秒前
英姑应助NANA采纳,获得10
5秒前
SCIER完成签到,获得积分10
5秒前
cc完成签到 ,获得积分10
5秒前
colorful完成签到,获得积分10
5秒前
YCLING完成签到,获得积分10
6秒前
Lucas应助碧海琴天Candyship采纳,获得10
6秒前
晶莹黎发布了新的文献求助10
7秒前
XXX关闭了XXX文献求助
7秒前
8秒前
8秒前
安详芷发布了新的文献求助10
9秒前
超级无敌暴龙战士完成签到,获得积分10
9秒前
liulangnmg完成签到,获得积分10
9秒前
11秒前
11秒前
11秒前
liulangnmg发布了新的文献求助10
13秒前
Owen应助六六采纳,获得10
14秒前
14秒前
WCM完成签到,获得积分10
15秒前
晶莹黎完成签到,获得积分10
16秒前
研友_1LkAmZ发布了新的文献求助10
16秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
善良的剑通发布了新的文献求助200
17秒前
樱悼柳雪完成签到,获得积分10
18秒前
ljw完成签到 ,获得积分10
19秒前
勤恳的宛菡完成签到,获得积分10
20秒前
从容的君完成签到,获得积分10
21秒前
Ava应助务实牛排采纳,获得10
22秒前
安详芷完成签到,获得积分10
22秒前
okisseven7完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789767
求助须知:如何正确求助?哪些是违规求助? 5723251
关于积分的说明 15475510
捐赠科研通 4917557
什么是DOI,文献DOI怎么找? 2647071
邀请新用户注册赠送积分活动 1594728
关于科研通互助平台的介绍 1549205