A comprehensive texture feature analysis framework of renal cell carcinoma: pathological, prognostic, and genomic evaluation based on CT images

肾细胞癌 病态的 医学 分割 放射科 特征(语言学) 阶段(地层学) Sørensen–骰子系数 人工智能 病理 模式识别(心理学) 图像分割 计算机科学 生物 古生物学 哲学 语言学
作者
Kai Wu,Peng Wu,Kai Yang,Zhe Li,Sijia Kong,Lu Yu,Enpu Zhang,Hanlin Liu,Qing Guo,Song Wu
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:32 (4): 2255-2265 被引量:21
标识
DOI:10.1007/s00330-021-08353-3
摘要

We tried to realize accurate pathological classification, assessment of prognosis, and genomic molecular typing of renal cell carcinoma by CT texture feature analysis. To determine whether CT texture features can perform accurate pathological classification and evaluation of prognosis and genomic characteristics in renal cell carcinoma.Patients with renal cell carcinoma from five open-source cohorts were analyzed retrospectively in this study. These data were randomly split to train and test machine learning algorithms to segment the lesion, predict the histological subtype, tumor stage, and pathological grade. Dice coefficient and performance metrics such as accuracy and AUC were calculated to evaluate the segmentation and classification model. Quantitative decomposition of the predictive model was conducted to explore the contribution of each feature. Besides, survival analysis and the statistical correlation between CT texture features, pathological, and genomic signatures were investigated.A total of 569 enhanced CT images of 443 patients (mean age 59.4, 278 males) were included in the analysis. In the segmentation task, the mean dice coefficient was 0.96 for the kidney and 0.88 for the cancer region. For classification of histologic subtype, tumor stage, and pathological grade, the model was on a par with radiologists and the AUC was 0.83 [Formula: see text] 0.1, 0.80 [Formula: see text] 0.1, and 0.77 [Formula: see text] 0.1 at 95% confidence intervals, respectively. Moreover, specific quantitative CT features related to clinical prognosis were identified. A strong statistical correlation (R2 = 0.83) between the feature crosses and genomic characteristics was shown. The structural equation modeling confirmed significant associations between CT features, pathological (β = - 0.75), and molecular subtype (β = - 0.30).The framework illustrates high performance in the pathological classification of renal cell carcinoma. Prognosis and genomic characteristics can be inferred by quantitative image analysis.• The analytical framework exhibits high-performance pathological classification of renal cell carcinoma and is on a par with human radiologists. • Quantitative decomposition of the predictive model shows that specific texture features contribute to histologic subtype and tumor stage classification. • Structural equation modeling shows the associations of genomic characteristics to CT texture features. Overall survival and molecular characteristics can be inferred by quantitative CT texture analysis in renal cell carcinoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李德胜完成签到,获得积分10
刚刚
ziliz发布了新的文献求助10
1秒前
领导范儿应助大气问枫采纳,获得10
3秒前
blacksmith0发布了新的文献求助10
3秒前
6秒前
6秒前
wanci应助吴1采纳,获得10
7秒前
复杂念梦发布了新的文献求助10
7秒前
orixero应助追寻紫安采纳,获得10
8秒前
marco完成签到,获得积分10
9秒前
乐乐应助AlexLee采纳,获得10
9秒前
科研通AI5应助ziliz采纳,获得10
10秒前
XIA完成签到 ,获得积分10
11秒前
cici完成签到,获得积分10
13秒前
执梳完成签到 ,获得积分10
14秒前
qqq完成签到 ,获得积分10
15秒前
冷静的奇迹完成签到,获得积分10
15秒前
hhhhxxxx完成签到,获得积分10
15秒前
superhero完成签到,获得积分10
16秒前
17秒前
无语的小熊猫完成签到 ,获得积分10
18秒前
kk完成签到 ,获得积分10
20秒前
23秒前
吴1发布了新的文献求助10
24秒前
大方百招完成签到,获得积分10
27秒前
上善若水发布了新的文献求助10
27秒前
29秒前
29秒前
元气蛋完成签到,获得积分10
30秒前
yang应助现代书雪采纳,获得10
32秒前
32秒前
顺其自然完成签到 ,获得积分10
33秒前
34秒前
安详的惜梦完成签到 ,获得积分10
34秒前
坚强枫发布了新的文献求助10
34秒前
小蘑菇应助小菡菡采纳,获得10
38秒前
上善若水完成签到,获得积分10
38秒前
大气问枫发布了新的文献求助10
38秒前
qaplay完成签到 ,获得积分0
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779439
求助须知:如何正确求助?哪些是违规求助? 3324973
关于积分的说明 10220672
捐赠科研通 3040111
什么是DOI,文献DOI怎么找? 1668560
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758522