太赫兹辐射
石墨烯
光学
材料科学
光电子学
线极化
圆极化
极化(电化学)
物理
纳米技术
微带线
物理化学
化学
激光器
作者
Mahsa Barkabian,Nahid Sharifi,Nosrat Granpayeh
出处
期刊:Optics Express
[The Optical Society]
日期:2021-06-01
卷期号:29 (13): 20160-20160
被引量:64
摘要
In this study, an ultra-thin reflective metasurface is proposed for polarization conversion in the terahertz band. Each unit cell of metasurface is composed of graphene ribbons lying diagonally on silicon substrate. A reflective metal is also placed at the bottom of the structure. Our polarization converter works as a linear polarization converter (LPC) and linear to circular polarization converter (LTC-PC) by variation of the chemical potential of graphene, which can actively be changed by chemical doping or electrical bias of the graphene. The working bandwidth of LPC changes by adjusting the chemical potential of the graphene. The LPC structure has more than 99% polarization conversion ratio in the frequency range of 0.83-0.92 THz, even by changing the angle of incident wave up to 45°, the results are still acceptable. The LTC-PC has less than 3dB axial ratio (AR) in the frequency range of 0.6-0.67 THz for left-handed circularly polarized (LHCP) waves and 0.72-0.97 THz for right-handed circularly polarized (RHCP) waves. To verify the simulation results, an equivalent circuit model based on the structure performance is proposed. Equivalent circuit model results agree very well with the simulation results. Due to the fabrication feasibility, ultra-thin thickness, incident angle insensitive, and high efficiency, our structure has great potential in state-of-the-art technologies such as imaging, sensing, communication, and other optical applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI