PTPN22型
瓜氨酸化
蛋白质酪氨酸磷酸酶
分子生物学
生物
精氨酸
化学
单核苷酸多态性
细胞生物学
瓜氨酸
生物化学
激酶
基因
基因型
氨基酸
作者
Hui‐Hsin Chang,Nishant Dwivedi,Anthony P. Nicholas,I‐Cheng Ho
摘要
A C-to-T single-nucleotide polymorphism (SNP) located at position 1858 of human protein tyrosine phosphatase PTPN22 complementary DNA carries the highest risk of rheumatoid arthritis (RA) among all non-HLA genetic variants. This C1858T SNP converts an arginine (R620) to a tryptophan (W620), but it is unclear why it has such a strong impact on RA, a disease characterized by anti-citrullinated protein antibodies. The aim of this study was to test the hypothesis that PTPN22 regulates protein citrullination.The level of citrullinated proteins in immune cells was quantified by Western blotting. The physical interaction between PTPN22 and peptidyl arginine deiminase type 4 (PAD-4), which is one of the enzymes that catalyzes protein citrullination, was examined by coimmunoprecipitation. Neutrophils were collected from healthy donors carrying the C1858T SNP and healthy donors not carrying this SNP. The formation of neutrophil extracellular traps (NETs) was examined by immunocytochemistry.PTPN22 physically interacted with PAD-4, and a deficiency in PTPN22 enhanced protein citrullination. This abnormality was reversed by exogenous wild-type PTPN22 or catalytically dead mutant PTPN22. The R-to-W conversion rendered PTPN22 unable to interact with PAD-4 and suppress citrullination. The C1858T SNP was associated with hypercitrullination in peripheral blood mononuclear cells and a heightened propensity for spontaneous formation of NETs, which is a PAD-4-dependent process.PTPN22 is an inhibitor of PAD-4 and protein citrullination. This function of PTPN22 is independent of its phosphatase activity but requires R620. Our data not only establish a molecular link between PTPN22 and PAD-4, but also suggest that the C1858T SNP increases the risk of RA by enhancing protein citrullination and spontaneous formation of NETs.
科研通智能强力驱动
Strongly Powered by AbleSci AI