Diagnostic Performance of Machine Learning-Derived Radiomics Signature of Pericoronary Adipose Tissue in Coronary Computed Tomography Angiography for Coronary Artery In-Stent Restenosis

医学 无线电技术 支架 再狭窄 放射科 计算机断层血管造影 经皮冠状动脉介入治疗 人工智能 血管造影 内科学 计算机科学 心肌梗塞
作者
Keyi Cui,Shuo Liang,Minghui Hua,Yufan Gao,Zhenxing Feng,Wenjiao Wang,Hong Zhang
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:30 (12): 2834-2843 被引量:4
标识
DOI:10.1016/j.acra.2023.04.006
摘要

Coronary inflammation can alter the perivascular fat phenotype. Hence, we aimed to assess the diagnostic performance of radiomics features of pericoronary adipose tissue (PCAT) in coronary computed tomography angiography (CCTA) for in-stent restenosis (ISR) after percutaneous coronary intervention.In this study, 165 patients with 214 eligible vessels were included, and ISR was found in 79 vessels. After evaluating clinical and stent characteristics, peri-stent fat attenuation index, and PCAT volume, 1688 radiomics features were extracted from each peri-stent PCAT segmentation. The eligible vessels were randomly categorized into training and validation groups in a ratio of 7:3. After performing feature selection using Pearson's correlation, F test, and least absolute shrinkage and selection operator analysis, radiomics models and integrated models that combined selected clinical features and Radscore were established using five different machine learning algorithms (logistic regression, support vector machine, random forest, stochastic gradient descent, and XGBoost). Subgroup analysis was performed using the same method for patients with stent diameters of ≤ 3 mm.Nine significant radiomics features were selected, and the areas under the curves (AUCs) for the radiomics model and the integrated model were 0.69 and 0.79, respectively, for the validation group. The AUCs of the subgroup radiomics model based on 15 selected radiomics features and the subgroup integrated model were 0.82 and 0.85, respectively, for the validation group, which showed better diagnostic performance.CCTA-based radiomics signature of PCAT has the potential to identify coronary artery ISR without additional costs or radiation exposure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彩色半烟完成签到,获得积分10
1秒前
大模型应助LNE采纳,获得10
1秒前
4秒前
ShiRz完成签到,获得积分10
4秒前
123完成签到,获得积分10
5秒前
爆米花应助马桶盖盖子采纳,获得10
7秒前
8秒前
上官若男应助hwezhu采纳,获得10
8秒前
Stalin完成签到,获得积分10
9秒前
遥感小虫发布了新的文献求助10
9秒前
科研通AI5应助暗月皇采纳,获得10
10秒前
深情安青应助DIDIDI采纳,获得10
10秒前
xiexie完成签到,获得积分10
12秒前
13秒前
xi完成签到 ,获得积分10
13秒前
FOLY发布了新的文献求助10
13秒前
HAHA_完成签到,获得积分10
13秒前
15秒前
遥感小虫完成签到,获得积分10
17秒前
Li应助Ytgl采纳,获得10
17秒前
17秒前
hwezhu发布了新的文献求助10
19秒前
19秒前
Cherish应助lily336699采纳,获得10
20秒前
honghong1992完成签到,获得积分10
20秒前
寒冷的奇异果完成签到,获得积分10
20秒前
幸福的鑫鹏完成签到,获得积分10
20秒前
jojo发布了新的文献求助30
20秒前
小孟吖完成签到 ,获得积分10
21秒前
pluto应助Ryan采纳,获得50
21秒前
大旭发布了新的文献求助10
21秒前
22秒前
23秒前
24秒前
wanci应助着急的小松鼠采纳,获得10
24秒前
25秒前
26秒前
jojo完成签到,获得积分10
27秒前
拒马发布了新的文献求助10
28秒前
默默的白开水完成签到 ,获得积分10
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781157
求助须知:如何正确求助?哪些是违规求助? 3326652
关于积分的说明 10227891
捐赠科研通 3041760
什么是DOI,文献DOI怎么找? 1669590
邀请新用户注册赠送积分活动 799104
科研通“疑难数据库(出版商)”最低求助积分说明 758751