Diagnostic Performance of Machine Learning-Derived Radiomics Signature of Pericoronary Adipose Tissue in Coronary Computed Tomography Angiography for Coronary Artery In-Stent Restenosis

医学 无线电技术 支架 再狭窄 放射科 计算机断层血管造影 经皮冠状动脉介入治疗 人工智能 血管造影 内科学 计算机科学 心肌梗塞
作者
Keyi Cui,Shuo Liang,Minghui Hua,Yufan Gao,Zhenxing Feng,Wenjiao Wang,Hong Zhang
出处
期刊:Academic Radiology [Elsevier]
卷期号:30 (12): 2834-2843 被引量:9
标识
DOI:10.1016/j.acra.2023.04.006
摘要

Coronary inflammation can alter the perivascular fat phenotype. Hence, we aimed to assess the diagnostic performance of radiomics features of pericoronary adipose tissue (PCAT) in coronary computed tomography angiography (CCTA) for in-stent restenosis (ISR) after percutaneous coronary intervention.In this study, 165 patients with 214 eligible vessels were included, and ISR was found in 79 vessels. After evaluating clinical and stent characteristics, peri-stent fat attenuation index, and PCAT volume, 1688 radiomics features were extracted from each peri-stent PCAT segmentation. The eligible vessels were randomly categorized into training and validation groups in a ratio of 7:3. After performing feature selection using Pearson's correlation, F test, and least absolute shrinkage and selection operator analysis, radiomics models and integrated models that combined selected clinical features and Radscore were established using five different machine learning algorithms (logistic regression, support vector machine, random forest, stochastic gradient descent, and XGBoost). Subgroup analysis was performed using the same method for patients with stent diameters of ≤ 3 mm.Nine significant radiomics features were selected, and the areas under the curves (AUCs) for the radiomics model and the integrated model were 0.69 and 0.79, respectively, for the validation group. The AUCs of the subgroup radiomics model based on 15 selected radiomics features and the subgroup integrated model were 0.82 and 0.85, respectively, for the validation group, which showed better diagnostic performance.CCTA-based radiomics signature of PCAT has the potential to identify coronary artery ISR without additional costs or radiation exposure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
陈龙平完成签到 ,获得积分10
刚刚
可爱的函函应助经小夏采纳,获得10
刚刚
Rainbow完成签到,获得积分10
1秒前
DJDJ完成签到 ,获得积分10
1秒前
怕黑的丹翠完成签到,获得积分10
1秒前
善学以致用应助穆三问采纳,获得10
2秒前
SciGPT应助是小曹啊采纳,获得10
2秒前
ASD发布了新的文献求助10
2秒前
3秒前
4秒前
科研通AI6应助annafan采纳,获得10
5秒前
愉快云朵发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
222发布了新的文献求助10
8秒前
0713发布了新的文献求助10
8秒前
传奇3应助dxm采纳,获得10
9秒前
9秒前
nms170520发布了新的文献求助10
11秒前
djbj2022发布了新的文献求助80
11秒前
鲸落发布了新的文献求助10
12秒前
要吃虾饺发布了新的文献求助10
14秒前
阿航完成签到,获得积分10
15秒前
李健应助愉快云朵采纳,获得10
15秒前
Xuemin完成签到,获得积分10
17秒前
充电宝应助blossom采纳,获得10
17秒前
玛卡巴卡马卡完成签到,获得积分20
20秒前
飞快的从丹应助紫亦君采纳,获得20
20秒前
Zx_1993应助yjq采纳,获得20
20秒前
12345发布了新的文献求助10
20秒前
Ava应助nms170520采纳,获得10
22秒前
南城忆潇湘完成签到,获得积分10
22秒前
非而者厚应助科研通管家采纳,获得20
22秒前
22秒前
非而者厚应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342879
求助须知:如何正确求助?哪些是违规求助? 4478579
关于积分的说明 13940083
捐赠科研通 4375429
什么是DOI,文献DOI怎么找? 2404055
邀请新用户注册赠送积分活动 1396617
关于科研通互助平台的介绍 1368930