Constructing a diagnostic prediction model to estimate the severe respiratory syncytial virus pneumonia in children based on machine learning

肺炎 呼吸系统 医学 病毒 重症监护医学 病毒学 儿科 内科学
作者
Yuanwei Liu,Qiong Wu,Lifang Zhou,Yingyuan Tang,Fen Li,Shuangjie Li
出处
期刊:Shock [Lippincott Williams & Wilkins]
标识
DOI:10.1097/shk.0000000000002472
摘要

Abstract Background Severe respiratory syncytial virus (RSV) pneumonia is a leading cause of hospitalization and morbidity in infants and young children. Early identification of severe RSV pneumonia is crucial for timely and effective treatment by pediatricians. Currently, no prediction model exists for identifying severe RSV pneumonia in children. Methods This study aimed to construct a diagnostic prediction model for severe RSV pneumonia in children using a machine learning algorithm. We analyzed data from the Gene Expression Omnibus (GEO) Series, including training dataset GSE246622 and testing dataset GSE105450, to identify differential genes between severe and mild-to-moderate RSV pneumonia in children. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed on the differential genes, followed by the construction of a protein-protein interaction (PPI) network. An artificial neural network (ANN) algorithm was then used to develop and validate a diagnostic prediction model for severe RSV pneumonia in children. Results We identified 34 differentially expressed genes between the severe and mild-to-moderate RSV pneumonia groups. Enrichment analysis revealed that these genes were primarily related to pathogenic infection and immune response. From the PPI network, we identified 10 hub genes and, using the random forest algorithm, screened out 20 specific genes. The ANN-based diagnostic prediction model achieved an area under the curve (AUC) value of 0.970 in the training group and 0.833 in the testing group, demonstrating the model's accuracy. Conclusions This study identified specific biomarkers and developed a diagnostic model for severe RSV pneumonia in children. These findings provide a robust foundation for early identification and treatment of severe RSV pneumonia, offering new insights into its pathogenesis and improving pediatric care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangchong完成签到,获得积分10
1秒前
1秒前
2秒前
tangwater完成签到,获得积分10
2秒前
CodeCraft应助曼林南烟采纳,获得10
2秒前
小文殊发布了新的文献求助10
6秒前
felix发布了新的文献求助10
7秒前
669完成签到,获得积分10
7秒前
7秒前
yykeyan完成签到,获得积分10
7秒前
奶糖喵发布了新的文献求助10
7秒前
孟子完成签到 ,获得积分10
9秒前
略略略完成签到 ,获得积分10
11秒前
xxx发布了新的文献求助10
12秒前
12秒前
顾矜应助laika采纳,获得10
14秒前
情怀应助ManLi采纳,获得10
15秒前
15秒前
16秒前
17秒前
科研12345完成签到,获得积分20
18秒前
18秒前
bai完成签到,获得积分10
19秒前
小桃耶完成签到,获得积分10
19秒前
Cyan发布了新的文献求助10
20秒前
斐嘿嘿发布了新的文献求助10
21秒前
顾矜应助茹茹采纳,获得10
22秒前
23秒前
24秒前
20201028完成签到 ,获得积分10
25秒前
等待的鱼完成签到,获得积分10
29秒前
laika发布了新的文献求助10
32秒前
33秒前
jsdiohfsiodhg完成签到,获得积分10
33秒前
34秒前
huff完成签到,获得积分10
34秒前
dujinjun完成签到,获得积分10
34秒前
韶雁开发布了新的文献求助10
38秒前
40秒前
memory完成签到,获得积分10
41秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846026
求助须知:如何正确求助?哪些是违规求助? 3388389
关于积分的说明 10553009
捐赠科研通 3108936
什么是DOI,文献DOI怎么找? 1713255
邀请新用户注册赠送积分活动 824620
科研通“疑难数据库(出版商)”最低求助积分说明 774982