清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Enhancing Underwater Object Detection and Classification Using Advanced Imaging Techniques: A Novel Approach with Diffusion Models

水下 计算机科学 扩散 人工智能 目标检测 对象(语法) 基于对象 计算机视觉 模式识别(心理学) 遥感 地质学 物理 海洋学 热力学
作者
Prabhavathy Pachaiyappan,G Chidambaram,Abu Jahid,Mohammed H. Alsharif
出处
期刊:Sustainability [Multidisciplinary Digital Publishing Institute]
卷期号:16 (17): 7488-7488 被引量:5
标识
DOI:10.3390/su16177488
摘要

Underwater object detection and classification pose significant challenges due to environmental factors such as water turbidity and variable lighting conditions. This research proposes a novel approach that integrates advanced imaging techniques with diffusion models to address these challenges effectively, aligning with Sustainable Development Goal (SDG) 14: Life Below Water. The methodology leverages the Convolutional Block Attention Module (CBAM), Modified Swin Transformer Block (MSTB), and Diffusion model to enhance the quality of underwater images, thereby improving the accuracy of object detection and classification tasks. This study utilizes the TrashCan dataset, comprising diverse underwater scenes and objects, to validate the proposed method’s efficacy. This study proposes an advanced imaging technique YOLO (you only look once) network (AIT-YOLOv7) for detecting objects in underwater images. This network uses a modified U-Net, which focuses on informative features using a convolutional block channel and spatial attentions for color correction and a modified swin transformer block for resolution enhancement. A novel diffusion model proposed using modified U-Net with ResNet understands the intricate structures in images with underwater objects, which enhances detection capabilities under challenging visual conditions. Thus, AIT-YOLOv7 net precisely detects and classifies different classes of objects present in this dataset. These improvements are crucial for applications in marine ecology research, underwater archeology, and environmental monitoring, where precise identification of marine debris, biological organisms, and submerged artifacts is essential. The proposed framework advances underwater imaging technology and supports the sustainable management of marine resources and conservation efforts. The experimental results demonstrate that state-of-the-art object detection methods, namely SSD, YOLOv3, YOLOv4, and YOLOTrashCan, achieve mean accuracies (mAP@0.5) of 57.19%, 58.12%, 59.78%, and 65.01%, respectively, whereas the proposed AIT-YOLOv7 net reaches a mean accuracy (mAP@0.5) of 81.4% on the TrashCan dataset, showing a 16.39% improvement. Due to this improvement in the accuracy and efficiency of underwater object detection, this research contributes to broader marine science and technology efforts, promoting the better understanding and management of aquatic ecosystems and helping to prevent and reduce the marine pollution, as emphasized in SDG 14.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wefor完成签到 ,获得积分10
9秒前
动听的千萍关注了科研通微信公众号
12秒前
GankhuyagJavzan完成签到,获得积分10
16秒前
fzh完成签到,获得积分10
29秒前
yinlao完成签到,获得积分10
37秒前
40秒前
氟锑酸完成签到 ,获得积分10
46秒前
小贾爱喝冰美式完成签到 ,获得积分10
46秒前
我是笨蛋完成签到 ,获得积分10
49秒前
54秒前
多边棱发布了新的文献求助10
59秒前
cdercder应助科研通管家采纳,获得20
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得20
1分钟前
gmc完成签到 ,获得积分10
1分钟前
庄怀逸完成签到 ,获得积分10
1分钟前
健康的大船完成签到 ,获得积分10
1分钟前
啤酒人完成签到 ,获得积分10
1分钟前
小鳄鱼一只完成签到,获得积分10
1分钟前
震动的沉鱼完成签到 ,获得积分10
1分钟前
冷傲凝琴完成签到,获得积分10
1分钟前
笨笨完成签到 ,获得积分10
1分钟前
1分钟前
fanssw完成签到 ,获得积分10
1分钟前
1分钟前
合适的寄灵完成签到 ,获得积分10
1分钟前
shadow完成签到,获得积分10
1分钟前
沿途东行完成签到 ,获得积分10
1分钟前
雪山飞龙发布了新的文献求助10
2分钟前
害羞便当完成签到 ,获得积分10
2分钟前
失眠的香蕉完成签到 ,获得积分10
3分钟前
端庄洪纲完成签到 ,获得积分10
3分钟前
aowulan完成签到 ,获得积分10
3分钟前
研友_8y2G0L完成签到,获得积分10
3分钟前
3分钟前
victory_liu完成签到,获得积分10
3分钟前
Baboonium完成签到,获得积分10
3分钟前
lily完成签到 ,获得积分10
3分钟前
叶子完成签到,获得积分10
3分钟前
一一一多完成签到 ,获得积分10
3分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798521
求助须知:如何正确求助?哪些是违规求助? 3344082
关于积分的说明 10318422
捐赠科研通 3060628
什么是DOI,文献DOI怎么找? 1679712
邀请新用户注册赠送积分活动 806761
科研通“疑难数据库(出版商)”最低求助积分说明 763353