Quantitative Soil Characterization for Biochar–Cd Adsorption: Machine Learning Prediction Models for Cd Transformation and Immobilization

生物炭 吸附 表征(材料科学) 转化(遗传学) 化学 环境化学 化学工程 环境科学 材料科学 纳米技术 热解 有机化学 工程类 生物化学 基因
作者
Muhammad Rashid,Yan‐Hong Wang,Yilong Yin,Balal Yousaf,Shaojun Jiang,Adeel Feroz Mirza,Bing Chen,Xiang Li,Zhongzhen Liu
出处
期刊:Toxics [MDPI AG]
卷期号:12 (8): 535-535 被引量:3
标识
DOI:10.3390/toxics12080535
摘要

Soil pollution with cadmium (Cd) poses serious health and environmental consequences. The study investigated the incubation of several soil samples and conducted quantitative soil characterization to assess the influence of biochar (BC) on Cd adsorption. The aim was to develop predictive models for Cd concentrations using statistical and modeling approaches dependent on soil characteristics. The potential risk linked to the transformation and immobilization of Cd adsorption by BC in the soil could be conservatively assessed by pH, clay, cation exchange capacity, organic carbon, and electrical conductivity. In this study, Long Short-Term Memory (LSTM), Bidirectional Gated Recurrent Unit (BiGRU), and 5-layer CNN Convolutional Neural Networks (CNNs) were applied for risk assessments to establish a framework for evaluating Cd risk in BC amended soils to predict Cd transformation. In the case of control soils (CK), the BiGRU model showed commendable performance, with an R2 value of 0.85, indicating an approximate 85.37% variance in the actual Cd. The LSTM model, which incorporates sequence data, produced less accurate results (R2=0.84), while the 5-layer CNN model had an R2 value of 0.91, indicating that the CNN model could account for over 91% of the variation in actual Cd levels. In the case of BC-applied soils, the BiGRU model demonstrated a strong correlation between predicted and actual values with R2 (0.93), indicating that the model explained 93.21% of the variance in Cd concentrations. Similarly, the LSTM model showed a notable increase in performance with BC-treated soil data. The R2 value for this model stands at a robust R2 (0.94), reflecting its enhanced ability to predict Cd levels with BC incorporation. Outperforming both recurrent models, the 5-layer CNN model attained the highest precision with an R2 value of 0.95, suggesting that 95.58% of the variance in the actual Cd data can be explained by the CNN model’s predictions in BC-amended soils. Consequently, this study suggests developing ecological soil remediation strategies that can effectively manage heavy metal pollution in soils for environmental sustainability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
小王同志发布了新的文献求助20
1秒前
1秒前
Yuenyee完成签到 ,获得积分10
2秒前
2秒前
2秒前
2秒前
2秒前
3秒前
zzdd发布了新的文献求助10
3秒前
丫丫完成签到 ,获得积分10
3秒前
做好自己发布了新的文献求助10
3秒前
xiang发布了新的文献求助10
3秒前
4秒前
华仔应助小黄采纳,获得10
5秒前
留白守墨发布了新的文献求助10
5秒前
5秒前
wuxunxun2015发布了新的文献求助10
6秒前
afar发布了新的文献求助10
6秒前
优美的明辉完成签到 ,获得积分10
7秒前
snowdream发布了新的文献求助10
7秒前
彩虹捕手发布了新的文献求助30
7秒前
2E9完成签到,获得积分10
7秒前
Cola完成签到,获得积分0
8秒前
8秒前
tree发布了新的文献求助10
9秒前
nini完成签到 ,获得积分10
9秒前
9秒前
9秒前
FashionBoy应助十点差一分采纳,获得10
10秒前
臻酒发布了新的文献求助10
10秒前
希望天下0贩的0应助谨言采纳,获得10
10秒前
10秒前
10秒前
10秒前
10秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5614191
求助须知:如何正确求助?哪些是违规求助? 4699280
关于积分的说明 14902179
捐赠科研通 4738786
什么是DOI,文献DOI怎么找? 2547547
邀请新用户注册赠送积分活动 1511285
关于科研通互助平台的介绍 1473666