Unraveling the Catalytic Performance of the Nonprecious Metal Single-Atom-Embedded Graphitic s-Triazine-Based C3N4 for CO2 Hydrogenation

材料科学 石墨氮化碳 催化作用 Atom(片上系统) 金属 贵金属 从头算 吸附 单层 物理化学 纳米技术 无机化学 化学 有机化学 冶金 嵌入式系统 光催化 计算机科学
作者
Yue Zhang,Xinrui Cao,Zexing Cao
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (31): 35844-35853 被引量:11
标识
DOI:10.1021/acsami.2c09813
摘要

Graphitic carbon nitride (g-C3N4) is regarded as a promising potent photoelectrocatalyst for CO2 reduction. Here, extensive first-principles calculations and ab initio molecular dynamics (AIMD) simulations are performed to systematically explore the structural and electronic properties of nonprecious metal single-atom-embedded graphitic s-triazine-based C3N4 (M@gt-C3N4, M = Mn, Fe, Co, Ni, Cu, and Mo) monolayer materials and their catalytic performances as the single-atom catalysts (SACs) for CO2 hydrogenation to HCOOH, CO, and CH3OH. It is found that the atomically dispersed non-noble metal Mn, Fe, Co, and Mo sites anchored on gt-C3N4 can efficiently activate both H2 and CO2, and their coadsorbed state serves as a precursor to the hydrogenation of CO2 to different C1 products. Among these SACs (M@gt-C3N4, M = Mn, Fe, Co, and Mo), Co@gt-C3N4 was predicted to have the best catalytic performance for CO2 hydrogenation to C1 products, although their mechanistic details are somewhat different. The predicted energy barriers of the rate-determining steps for the conversion of CO2 into HCOOH, CO, and CH3OH on Co@gt-C3N4 are 0.58, 0.67, and 1.19 eV, respectively. The desorption of products is generally energy-demanding, but it can be facilitated remarkably by the subsequent adsorption of H2, which regenerates M@gt-C3N4 for the next catalytic cycle. The present study demonstrates that the catalytic performance of gt-C3N4 can be well regulated by embedding the non-noble metal single atom, and the porous gt-C3N4 is nicely suited for the construction of high-performance single-atom catalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pluto应助wjh采纳,获得50
刚刚
duosu发布了新的文献求助10
1秒前
CipherSage应助kiki_778采纳,获得10
4秒前
4秒前
yar应助韩韩采纳,获得10
4秒前
7秒前
9秒前
9秒前
852应助忐忑的老虎采纳,获得10
11秒前
妃妃发布了新的文献求助10
11秒前
xzyin应助尚好采纳,获得20
12秒前
12秒前
13秒前
sdavid完成签到,获得积分10
14秒前
14秒前
飞翔的霸天哥应助mo采纳,获得30
15秒前
15秒前
sdavid发布了新的文献求助10
19秒前
wyr发布了新的文献求助10
19秒前
20秒前
21秒前
23秒前
ChatGPT发布了新的文献求助10
24秒前
Singularity应助飞飞采纳,获得10
25秒前
26秒前
希望天下0贩的0应助zsj3787采纳,获得10
27秒前
27秒前
27秒前
cebr发布了新的文献求助10
27秒前
zouyangmingjia完成签到,获得积分10
29秒前
30秒前
interest-li发布了新的文献求助10
30秒前
30秒前
31秒前
31秒前
32秒前
32秒前
hxksxc完成签到 ,获得积分10
33秒前
wangrswjx完成签到,获得积分10
34秒前
34秒前
高分求助中
【本贴是提醒信息,请勿应助】请在求助之前详细阅读求助说明!!!! 20000
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
The Three Stars Each: The Astrolabes and Related Texts 900
Yuwu Song, Biographical Dictionary of the People's Republic of China 800
Multifunctional Agriculture, A New Paradigm for European Agriculture and Rural Development 600
Challenges, Strategies, and Resiliency in Disaster and Risk Management 500
Bernd Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2481942
求助须知:如何正确求助?哪些是违规求助? 2144460
关于积分的说明 5470026
捐赠科研通 1866925
什么是DOI,文献DOI怎么找? 927985
版权声明 563071
科研通“疑难数据库(出版商)”最低求助积分说明 496438