清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Interpretable AI‐assisted clinical decision making for treatment selection for brain metastases in radiation therapy

医学 放射外科 放射治疗 医学影像学 癌症 放射科 放射肿瘤学家 脑癌 核医学 医学物理学 内科学
作者
Yufeng Cao,H.R.R. Cherng,Dan Kunaprayoon,Mark V. Mishra,Lei Ren
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17844
摘要

Abstract Background AI modeling CDM can improve the quality and efficiency of clinical practice or provide secondary opinion consultations for patients with limited medical resources to address healthcare disparities. Purpose In this study, we developed an interpretable AI model to select radiotherapy treatment options, that is, whole‐brain radiation therapy (WBRT) versus stereotactic radiosurgery (SRS), for patients with brain metastases. Materials/Methods A total of 232 patients with brain metastases treated by radiation therapy from 2018 to 2023 were obtained. CT/MR images with contoured target lesions and organs‐at‐risk (OARs) as well as non‐image‐based clinical parameters were extracted and digitized as inputs to the model. These parameters included (1) tumor size, shape, location, and proximity of lesions to OARs; (2) age; (3) the number of brain metastases; (4) Eastern Cooperative Oncology Group (ECOG) performance status; (5) presence of neurologic symptoms; (6) if surgery was performed (either pre/post‐op RT); (7) newly diagnosed cancer with brain metastases (de‐novo) versus re‐treatment (either local or distant in the brain); (8) primary cancer histology; (9) presence of extracranial metastases; (10) extent of extracranial disease (progression vs. stable); and (11) receipt of systemic therapy. One vanilla and two interpretable 3D convolutional neural networks (CNN) models were developed. The vanilla one‐path model (VM‐1) uses only images as input, while the two interpretable models use both images and clinical parameters as inputs with two (IM‐2) and 11 (IM‐11) independent paths, respectively. This novel design allowed the model to calculate a class activation score for each input to interpret its relative weighting and importance in decision‐making. The actual radiotherapy treatment (WBRT or SRS) used for the patients was used as ground truth for model training. The model performance was assessed by Stratified‐10‐fold cross‐validation, with each fold consisting of selected 184 training, 24 validation, and 24 testing subjects. Result A total of 232 brain metastases patients treated by WBRT or SRS were evaluated, including 80 WBRT and 152 SRS patients. Based on the images alone, the VM‐1 model prescribed correctly for 143 (94%) SRS and 67 (84%) WBRT cases. Based on both images and clinical parameters, the IM‐2 model prescribed correctly for 149 (98%) SRS and 74 (93%) WBRT cases. IM‐11 provided the most interpretability with a relative weighting for each input as follows: CT image (59.5%), ECOG performance status (7.5%), re‐treatment (5%), extracranial metastases (1.5%), number of brain metastases (9.5%), neurologic symptoms (3%), pre/post‐surgery (2%), primary cancer histology (2%), age (1%), progressive extracranial disease (6%), and receipt of systemic therapy (4.5%), reflecting the importance of all these inputs in clinical decision‐making. Conclusion Interpretable CNN models were successfully developed to use CT/MR images and non‐image‐based clinical parameters to predict the treatment selection between WBRT and SRS for brain metastases patients. The interpretability makes the model more transparent, carrying profound importance for the prospective integration of these models into routine clinical practice, particularly for informing real‐time clinical decision‐making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
椿iii完成签到 ,获得积分10
2秒前
飞雪完成签到,获得积分10
12秒前
13秒前
nojego发布了新的文献求助10
20秒前
氟锑酸完成签到 ,获得积分10
1分钟前
勤劳的颤完成签到 ,获得积分10
1分钟前
songnvshi完成签到 ,获得积分10
1分钟前
小鱼女侠完成签到 ,获得积分10
1分钟前
RONG完成签到 ,获得积分10
1分钟前
文献搬运工完成签到 ,获得积分10
1分钟前
baoxiaozhai完成签到 ,获得积分10
1分钟前
liangliu完成签到 ,获得积分10
1分钟前
1分钟前
zhangsan完成签到,获得积分10
1分钟前
asdwind完成签到,获得积分10
1分钟前
2分钟前
满意的伊发布了新的文献求助10
2分钟前
Lucas应助满意的伊采纳,获得10
2分钟前
科研狗的春天完成签到 ,获得积分10
2分钟前
danrushui777完成签到,获得积分10
2分钟前
小蘑菇应助轻松寄风采纳,获得10
2分钟前
2分钟前
轻松寄风发布了新的文献求助10
2分钟前
zz完成签到 ,获得积分10
2分钟前
任性云朵发布了新的文献求助10
3分钟前
小猴子完成签到 ,获得积分10
3分钟前
任性云朵完成签到,获得积分10
3分钟前
悦耳破茧完成签到 ,获得积分10
3分钟前
轩辕中蓝完成签到 ,获得积分10
3分钟前
小孟吖完成签到 ,获得积分10
4分钟前
生信小菜鸟完成签到 ,获得积分10
4分钟前
火之高兴完成签到 ,获得积分10
4分钟前
xrose完成签到 ,获得积分10
4分钟前
MM完成签到,获得积分10
4分钟前
飞翔的企鹅完成签到,获得积分10
4分钟前
lynn完成签到 ,获得积分10
5分钟前
5分钟前
墨墨完成签到 ,获得积分10
5分钟前
5分钟前
song完成签到 ,获得积分10
5分钟前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
Erectile dysfunction From bench to bedside 200
Advanced Introduction to Behavioral Law and Economics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825033
求助须知:如何正确求助?哪些是违规求助? 3367346
关于积分的说明 10445271
捐赠科研通 3086738
什么是DOI,文献DOI怎么找? 1698238
邀请新用户注册赠送积分活动 816657
科研通“疑难数据库(出版商)”最低求助积分说明 769907