癌症研究
下调和上调
基因敲除
生物
细胞培养
生物化学
遗传学
基因
作者
Tianyu Qu,Lei Song,Jiali Xu,Xiyi Lu,Dandan Yin,Jiali Dai,Chen Zhang,Renhua Guo,Erbao Zhang
出处
期刊:Cancer Research
[American Association for Cancer Research]
日期:2025-05-14
标识
DOI:10.1158/0008-5472.can-23-3748
摘要
Abstract Acquired resistance to EGFR tyrosine kinase inhibitors (TKIs) limits the efficacy of molecular targeted therapy in non-small cell lung cancer (NSCLC). Metabolic reprogramming is a hallmark of lung cancer that could contribute to TKI resistance. Through systematic screening and verification, we identified a role for the long noncoding RNA (lncRNA) MYLK-AS1 supporting acquired TKI resistance in lung cancer. Elevated expression of MYLK-AS1 correlated with TKI resistance in NSCLC patient samples and cell lines. c-Myc mediated transcriptional activation of MYLK-AS1, and m6A modification promoted post transcriptional upregulation. Mechanistically, MYLK-AS1 bound and directly drove phase separation of interleukin enhancer binding factor 3 (ILF3), thus interacting with the 3’UTR of glutamate dehydrogenase 1 (GLUD1) to post-transcriptionally promote its mRNA stability. MYLK-AS1-mediated GLUD1 upregulation accelerated mitochondrial glutamine catabolism, promoting TKI resistance. Inhibition of GLUD1 with the small-molecule inhibitor R162 in TKI resistant models suppressed cell proliferation in vitro and tumor growth in vivo. Moreover, knockdown of MYLK-AS1 also enhanced drug sensitivity in TKI resistant patient-derived xenograft models, suggesting its therapeutic potential. Collectively, these findings offer insights into the regulation of TKI resistance from the perspective of phase separation and metabolism and highlight targeting the MYLK-AS1/ILF3/GLUD1 axis as a potential strategy for improving the efficacy of EGFR TKIs in NSCLC.
科研通智能强力驱动
Strongly Powered by AbleSci AI