Car-Following Safety Control Framework Based on Short-Term Safety Evolution Pattern Prediction

期限(时间) 控制(管理) 车辆安全 计算机科学 工程类 汽车工程 人工智能 物理 量子力学
作者
Huansong Zhang,Jiachen Yang,Yong-Jun Shen,Qiong Bao
出处
期刊:Transportation Research Record [SAGE]
标识
DOI:10.1177/03611981251332256
摘要

Predicting and controlling car-following risks is a crucial component of advanced driver-assistance systems (ADAS). The traditional control framework activates only on reaching a specific risk threshold, which may not be timely enough to prevent collisions. This research proposes an active safety control framework based on prediction of safety evolution patterns. First, car-following samples are extracted from natural driving data, and safety and risk boundaries determined. The car-following patterns are conceptually divided into Safety, Disturbance, and Resilience based on the safety evolution trend. Subsequently, a proposed convolutional neural network (CNN) with gated recurrent unit (GRU) and with feature and temporal attention mechanisms is employed to predict the safety evolution pattern. Finally, a weight-optimized model predictive control (MPC) is applied for the safety control of samples predicted as Resilience. The results indicate that: (1) the proposed risk pattern prediction model achieves an average F1 score of 0.931, outperforming other baseline models; (2) the optimal weight combination for MPC is determined through grid search, resulting in an overall driving safety improvement of 29.31%, with the safety of all controlled samples remaining above the risk boundary and the proposed framework achieving significant improvements over traditional threshold-based solutions; and (3) there are distribution differences in the variables across safety evolution patterns, and the falsely predicted samples also exhibit feature distribution similarities to other patterns. The trade-off exists between safety and efficiency in the control algorithm. This study validates the effectiveness of the risk pattern prediction and safety control framework, contributing to the advancement of ADAS technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
遇上就这样吧应助RicardoYe采纳,获得100
刚刚
刚刚
文卿完成签到,获得积分10
刚刚
称心的书双完成签到,获得积分10
1秒前
Lucas应助Airlie采纳,获得10
1秒前
执着冬卉完成签到,获得积分20
2秒前
rocket发布了新的文献求助10
2秒前
AURORA应助dxh采纳,获得10
2秒前
LYB吕发布了新的文献求助10
5秒前
5秒前
不下雨完成签到 ,获得积分10
5秒前
haoliu完成签到,获得积分10
6秒前
科研通AI6应助谷青采纳,获得10
7秒前
Yang完成签到,获得积分0
7秒前
超级盼海发布了新的文献求助20
8秒前
8秒前
鸭鸭串完成签到,获得积分10
10秒前
10秒前
10秒前
花酒发布了新的文献求助10
10秒前
10秒前
打打应助积极烧鹅采纳,获得10
10秒前
假正经完成签到,获得积分10
11秒前
lilili应助刘k采纳,获得10
11秒前
活力曼文发布了新的文献求助10
12秒前
王讯完成签到,获得积分10
12秒前
13秒前
害羞鬼发布了新的文献求助10
13秒前
14秒前
14秒前
CCC发布了新的文献求助30
15秒前
dog发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
18秒前
rocket发布了新的文献求助10
18秒前
星辰大海应助飘逸太清采纳,获得10
18秒前
豌豆完成签到,获得积分10
18秒前
清风在侧发布了新的文献求助10
19秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5343570
求助须知:如何正确求助?哪些是违规求助? 4479163
关于积分的说明 13941833
捐赠科研通 4376193
什么是DOI,文献DOI怎么找? 2404632
邀请新用户注册赠送积分活动 1396988
关于科研通互助平台的介绍 1369329