生物相容性
脂质体
药物输送
纳米颗粒
纳米技术
药品
毒品携带者
化学
材料科学
药理学
医学
有机化学
作者
Katarzyna Solarska-Ściuk,Hanna Pruchnik
标识
DOI:10.1021/acs.molpharmaceut.5c00501
摘要
Silica-based materials and liposomes are widely employed in drug delivery systems, particularly as the most frequently evaluated platforms for intravenous drug administration. Their exceptional biocompatibility, versatile surface modification capabilities, and efficient encapsulation of a broad spectrum of therapeutic agents make them ideal for targeted and controlled drug delivery. Both nanodelivery systems interact with endothelial cells and various blood components, including erythrocytes (red blood cells) and white blood cells (lymphocytes, monocytes, and macrophages), potentially leading to cytotoxic effects. However, the detrimental impacts of silica nanoparticles (MSNs) and liposomes on healthy cells remain insufficiently investigated. The cytotoxicity of these carriers is strongly influenced by their physicochemical properties, such as size, surface charge, and functionalization, as well as the specific type of cells they encounter. This review aims to explore the molecular and cellular dysfunctions induced by MSNs and liposomes, which elicit various biological responses, including proinflammatory signaling, oxidative stress, and autophagy. Considering the toxicity associated with nanosilica and liposomes, strategies such as surface modifications and morphological adjustments may serve as effective approaches to mitigate these adverse effects. Implementing such modifications holds the potential to develop nanomaterials with lower toxicological profiles, thereby enhancing their safety and efficacy in clinical applications. By addressing these challenges, the advancement of silica-based materials and liposomes can be optimized for safer and more effective intravenous drug delivery systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI