Best-worst individuals driven multiple-layered differential evolution

差异进化 进化算法 进化计算 计算机科学 水准点(测量) 人口 杠杆(统计) 局部最优 数学优化 早熟收敛 稳健性(进化) 算法 人工智能 粒子群优化 数学 生物化学 化学 人口学 大地测量学 社会学 基因 地理
作者
Qingya Sui,Yang Yu,Kaiyu Wang,Lin Zhong,Zhenyu Lei,Shangce Gao
出处
期刊:Information Sciences [Elsevier BV]
卷期号:655: 119889-119889 被引量:16
标识
DOI:10.1016/j.ins.2023.119889
摘要

Conventional differential evolution (DE) algorithms have been widely used for optimisation problems but suffer from low performance and premature convergence. Hence, researchers have proposed advanced variants to enhance performance using information and strategies. However, the performance of the variants remains limited because they only utilise limited information of individuals. A more suitable search orientation for the algorithm is required to effectively leverage individual information and enhance the processing of mid-population data. This study presents a novel best-worst individual-driven multiple-layered differential evolution (BWDE) algorithm. A best-worst individual-driven mechanism is designed that leverages various pieces of individual information to overcome local optima or stagnation, facilitating escape from the current search space and maintaining group fitness levels. In addition, the five-layer structure of the BWDE algorithm allows for the adequate use of multiple layers of information to determine the evolutionary direction of a population. Consequently, a balance is achieved between population development and exploration at distinct evolutionary stages. Extensive experiments are conducted using the Congress on Evolutionary Computation (CEC) 2017 and 2011 standard benchmark functions to evaluate the effectiveness of the proposed algorithm. The results are compared with those of classical algorithms, a winning algorithm at a CEC competition, and state-of-the-art DE variants. The experimental results demonstrate that the proposed BWDE algorithm outperforms its competitors and achieves more competitive results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助伊力扎提采纳,获得10
1秒前
啵啵完成签到,获得积分10
1秒前
2秒前
天天发布了新的文献求助10
2秒前
MchemG应助可靠的音响采纳,获得30
2秒前
2秒前
Orange应助felix采纳,获得10
3秒前
3秒前
3秒前
4秒前
爆米花应助CruiSk采纳,获得30
4秒前
5秒前
5秒前
5秒前
chen完成签到,获得积分10
5秒前
6秒前
6秒前
qiann发布了新的文献求助10
6秒前
bdsb完成签到,获得积分10
7秒前
Lucas应助舒庆春采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
CC1219应助科研通管家采纳,获得10
8秒前
李健的小迷弟应助风荏采纳,获得10
8秒前
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
小老板发布了新的文献求助10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
多宝鱼发布了新的文献求助10
9秒前
Orange应助科研通管家采纳,获得10
9秒前
les3发布了新的文献求助10
9秒前
甲烷完成签到,获得积分10
9秒前
9秒前
wenjiaolin发布了新的文献求助10
9秒前
jenna发布了新的文献求助10
9秒前
10秒前
11秒前
思源应助火星上的紫采纳,获得10
11秒前
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790603
求助须知:如何正确求助?哪些是违规求助? 3335429
关于积分的说明 10274750
捐赠科研通 3051958
什么是DOI,文献DOI怎么找? 1674904
邀请新用户注册赠送积分活动 802898
科研通“疑难数据库(出版商)”最低求助积分说明 760993