流产
子宫内膜
仿形(计算机编程)
生物
怀孕
产科
生物信息学
妇科
医学
遗传学
计算机科学
操作系统
作者
Lei Zhang,Qian Li,Yan Su,Xinyuan Zhang,Jialin Qu,Dan Liao,Qin Zou,Hua Zou,Xiaoli Liu,Chunli Li,Junlin He
标识
DOI:10.1016/j.jprot.2023.104996
摘要
Unexplained recurrent spontaneous abortion (URSA) seriously affects female reproductive health, causing a great burden to patients both physically and mentally. Endometrial decidualization plays an important role in pregnancy, and impaired decidualization is an essential cause of URSA, but the cause of the damage is still poorly understood. This study aimed to reveal the pathogenesis of URSA by analyzing the differential protein expression profiles in the decidual tissue of patients with recurrent abortion compared to those with normal pregnancy. Morphological analysis revealed abnormal decidualization of endometrial tissue in patients with URSA. Quantitative proteomics analysis showed that a total of 146 differentially expressed proteins were identified between the two groups, among which 95 proteins were downregulated and 51 proteins were upregulated. Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways revealed that the protein expression profile and signaling pathways of endometrium in patients with URSA changed significantly, and cytoskeleton remodeling and morphological transformation disorders were associated with abortion induced by incomplete decidualization. Meanwhile, transcription factors analysis showed that the 3 most affected families were zf-C2H2, MYB and HMG. Therefore, our study may provide a basis for searching for potential markers of decidualization injury. At present, there are still about 50% of RSA patients with unknown causes, which brings great difficulties and blindness to clinical diagnosis and treatment.The limited proteomic studies on URSA further contribute to the lack of understanding in this field. However, in this study, the focus was on proteomic profiling analysis of the human endometrium in URSA patients compared to normal women. The findings revealed that cytoskeletal remodeling disorder is a significant contributor to the failure of decidualization in URSA patients. This insight highlights the potential role of cytoskeleton-related proteins in the pathogenesis of URSA, providing valuable information for further research and potential therapeutic interventions.
科研通智能强力驱动
Strongly Powered by AbleSci AI