Development and validation of a prediction model for postoperative intensive care unit admission in patients with non-cardiac surgery

布里氏评分 医学 列线图 接收机工作特性 重症监护室 心脏外科 曲线下面积 逻辑回归 急诊医学 重症监护 外科 重症监护医学 内科学 统计 数学
作者
Zhikun Xu,Shihua Yao,Zhongji Jiang,Linhui Hu,Zijun Huang,Quanjun Zeng,Xueyan Liu
出处
期刊:Heart & Lung [Elsevier BV]
卷期号:62: 207-214 被引量:2
标识
DOI:10.1016/j.hrtlng.2023.08.001
摘要

Accurately forecasting patients admitted to the intensive care units (ICUs) after surgery may improve clinical outcomes and guide the allocation of expensive and limited ICU resources. However, studies on predicting postoperative ICU admission in non-cardiac surgery have been limited.To develop and validate a prediction model combining pre- and intraoperative variables to predict ICU admission after non-cardiac surgery.This study is based on data from the Vital Signs DataBase (VitalDB) database. Predictors were selected using the least absolute shrinkage and selection operator regression method and logistic regression to develop a nomogram and an online web calculator. The model was internally verified by 1000-Bootstrap resampling. Performance of model was evaluated using area under the receiver operating characteristic curve (AUC), calibration curve and Brier score. The Youden's index was used to find the optimal nomogram's probability threshold. Clinical utility was assessed by decision curve analysis.This study included 5216 non-cardiac surgery patients; of these, 812 (15.6%) required postoperative ICU admission. Potential predictors included age, ASA classification, surgical department, emergency surgery, preoperative albumin level, preoperative urea nitrogen level, intraoperative crystalloid, intraoperative transfusion, intraoperative catheterization, and surgical time. A nomogram was constructed with an AUC of 0.917 (95% CI: 0.907-0.926) and a Brier score of 0.077. The Bootstrap-adjusted AUC was 0.914; the adjusted Brier score was 0.078. The calibration curve showed good agreement between predicted and actual probabilities; and the decision curve indicated clinical usefulness. Finally, we established an online web calculator for clinical application (https://xuzhikun.shinyapps.io/postopICUadmission1/).We developed and internally validated an easy-to-use nomogram for predicting ICU admission after non-cardiac surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微笑襄发布了新的文献求助10
1秒前
1秒前
linelolo完成签到,获得积分10
1秒前
英俊的铭应助魔幻凝云采纳,获得10
2秒前
2秒前
2秒前
FATHER LI完成签到,获得积分10
2秒前
pcb发布了新的文献求助10
2秒前
爆米花应助麟钰采纳,获得10
3秒前
wanci应助星河在眼里采纳,获得10
3秒前
顺其自然完成签到 ,获得积分10
3秒前
3秒前
Yangyang完成签到,获得积分10
3秒前
白青完成签到,获得积分10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
林屿溪完成签到,获得积分10
4秒前
4秒前
许甜甜鸭应助科研通管家采纳,获得10
4秒前
YellowStar发布了新的文献求助10
4秒前
4秒前
李健应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
4秒前
歡禧发布了新的文献求助10
4秒前
英姑应助科研通管家采纳,获得10
5秒前
柯科研发布了新的文献求助10
5秒前
sb发布了新的文献求助10
5秒前
5秒前
5秒前
Mandy完成签到,获得积分10
5秒前
传奇3应助lxz采纳,获得10
6秒前
6秒前
雾影觅光完成签到,获得积分10
7秒前
Alger完成签到,获得积分10
7秒前
Kira发布了新的文献求助10
7秒前
7秒前
wqy完成签到,获得积分10
7秒前
8秒前
lhy完成签到,获得积分10
8秒前
tjfwg完成签到,获得积分10
8秒前
高分求助中
Mehr Wasserstoff mit weniger Iridium 1000
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834161
求助须知:如何正确求助?哪些是违规求助? 3376729
关于积分的说明 10494684
捐赠科研通 3096157
什么是DOI,文献DOI怎么找? 1704857
邀请新用户注册赠送积分活动 820213
科研通“疑难数据库(出版商)”最低求助积分说明 771893