Deep learning methods in metagenomics: a review

基因组 微生物群 可解释性 计算机科学 人工智能 数据科学 深度学习 计算生物学 机器学习 人类微生物组计划 肠道微生物群 人体微生物群 生物信息学 生物 遗传学 基因
作者
Gaspar Roy,Edi Prifti,Eugeni Belda,Jean‐Daniel Zucker
标识
DOI:10.1101/2023.08.06.552187
摘要

Abstract The ever-decreasing cost of sequencing and the growing potential applications of metagenomics have led to an unprecedented surge in data generation. One of the most prevalent applications of metagenomics is the study of microbial environments, such as the human gut. The gut microbiome plays a crucial role in human health, providing vital information for patient diagnosis and prognosis. However, analyzing metagenomic data remains challenging due to several factors, including reference catalogs, sparsity, and compositionality. Deep learning (DL) enables novel and promising approaches that complement state-of-the-art microbiome pipelines. DL-based methods can address almost all aspects of microbiome analysis, including novel pathogen detection, sequence classification, patient stratification, and disease prediction. Beyond generating predictive models, a key aspect of these methods is also their interpretability. This article reviews deep learning approaches in metagenomics, including convolutional networks (CNNs), autoencoders, and attention-based models. These methods aggregate contextualized data and pave the way for improved patient care and a better understanding of the microbiome’s key role in our health. Author summary In our study, we look at the vast world of research in metagenomics, the study of genetic material from environmental samples, spurred by the increasing affordability of sequencing technologies. Our particular focus is the human gut microbiome, an environment teeming with microscopic life forms that plays a central role in our health and well-being. However, navigating through the vast amounts of data generated is not an easy task. Traditional methods hit roadblocks due to the unique nature of metagenomic data. That’s where deep learning (DL), a today well known branch of artificial intelligence, comes in. DL-based techniques complement existing methods and open up new avenues in microbiome research. They’re capable of tackling a wide range of tasks, from identifying unknown pathogens to predicting disease based on a patient’s unique microbiome. In our article, we provide a very comprehensive review of different DL strategies for metagenomics, including convolutional networks, autoencoders, and attention-based models. We are convinced that these techniques significantly enhance the field of metagenomic analysis in its entirety, paving the way for more accurate data analysis and, ultimately, better patient care. The PRISMA augmented diagram of our review is illustrated in Fig 1 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海中有月完成签到,获得积分10
2秒前
2秒前
云岫完成签到,获得积分10
3秒前
小马甲应助微风徐徐采纳,获得10
4秒前
彪壮的刺猬完成签到,获得积分10
4秒前
4秒前
Ffan发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
6秒前
魁梧的小霸王完成签到,获得积分10
6秒前
沙漠水发布了新的文献求助10
6秒前
孙伟伟完成签到,获得积分10
6秒前
呆萌幻桃完成签到 ,获得积分10
7秒前
彭于晏应助yh采纳,获得10
7秒前
自信的丸子完成签到,获得积分10
8秒前
英俊的铭应助loststarts采纳,获得10
8秒前
不戴眼镜的眼镜王蛇完成签到,获得积分10
8秒前
怡然依柔完成签到,获得积分10
9秒前
传奇3应助可爱的彩虹采纳,获得10
9秒前
孙伟伟发布了新的文献求助10
10秒前
sumu发布了新的文献求助10
10秒前
树懒发布了新的文献求助10
10秒前
10秒前
敏子完成签到,获得积分10
11秒前
Jay完成签到,获得积分10
11秒前
赵菡青完成签到,获得积分10
11秒前
xiaoli完成签到,获得积分10
11秒前
斯文败类应助等等采纳,获得10
11秒前
缓慢如南应助凉笙墨染采纳,获得10
12秒前
mak完成签到,获得积分10
12秒前
张才豪完成签到,获得积分10
13秒前
童宝完成签到,获得积分10
13秒前
123发布了新的文献求助10
13秒前
大方百招完成签到,获得积分10
13秒前
李亭发布了新的文献求助10
13秒前
欢呼忆丹完成签到,获得积分10
13秒前
13秒前
Answer完成签到,获得积分10
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1500
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
Composite Predicates in English 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3981669
求助须知:如何正确求助?哪些是违规求助? 3525375
关于积分的说明 11226558
捐赠科研通 3263153
什么是DOI,文献DOI怎么找? 1801445
邀请新用户注册赠送积分活动 879813
科研通“疑难数据库(出版商)”最低求助积分说明 807557