A methodological study of exposome based on an open database: Association analysis between exposure to metal mixtures and hyperuricemia

暴露的 全国健康与营养检查调查 环境卫生 高尿酸血症 医学 逻辑回归 老年学 内科学 尿酸 人口
作者
Hao Chen,Min Wang,Chongyang Zhang,Jiao Li
出处
期刊:Chemosphere [Elsevier BV]
卷期号:344: 140318-140318 被引量:3
标识
DOI:10.1016/j.chemosphere.2023.140318
摘要

Exposome recognizes that humans are constantly exposed to multiple environmental factors, and elucidating the health effects of complex exposure mixtures places greater demands on analytical methods.We aimed to explore the association between mixed exposure to metals and hyperuricemia (HUA), and highlight the potential of explainable machine learning (EML) and causal mediation analysis (CMA) for application in the analysis of exposome data.Pre-pandemic data from the National Health and Nutrition Examination Survey (NHANES) 2011-2020 and a total of 13780 individuals were included. We first used traditional statistical models (multiple logistic regression (MLR) and restricted cubic spline regression (RCS)) and EML to explore associations between mixed metals exposures and HUA, followed by the CMA using the 4-way decomposition method to analyze the interaction and mediation effects among BMI or estimated glomerular filtration rate (eGFR), metals and HUA.The prevalence of HUA was 18.91% (2606/13780). The MLR showed that mercury (Q4 vs Q1: OR = 1.08, 95% CI:1.02-1.14) and lead (Q4 vs Q1: OR = 1.23, 95% CI:1.13-1.34) were generally positively associated with HUA. Higher concentrations of lead, mercury, selenium and manganese were associated with the increased odds of HUA, and BMI and eGFR were the top two variables attributable to the risk of developing HUA in the EML. Subgroup analyses from the MLR and EML consistently demonstrated the positive relationship between exposure to lead, mercury and selenium in participants with BMI <25 kg/m2 and BMI ≥30 kg/m2. BMI mediated 32.12% of the association between lead exposure and HUA, and the interaction between BMI and lead accounted for 3.88% of the association in the CMA.Heavy metals can increase the HUA risk and BMI or eGFR can mediate and interact with metals to cause HUA. Future studies based on exposome can attempt to utilize the EML and CMA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张秋雨发布了新的文献求助10
1秒前
苹果小玉发布了新的文献求助10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得30
3秒前
科目三应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
瑞_应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得30
4秒前
orixero应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
思源应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得30
5秒前
5秒前
不困还能肝完成签到,获得积分10
5秒前
鉴湖完成签到,获得积分10
5秒前
不会学习的小郭完成签到 ,获得积分10
6秒前
77完成签到 ,获得积分10
7秒前
筋筋子完成签到,获得积分10
10秒前
努力向上的小刘完成签到,获得积分10
12秒前
15秒前
qiulong发布了新的文献求助10
18秒前
advance发布了新的文献求助10
21秒前
22秒前
25秒前
安详从云发布了新的文献求助10
25秒前
科研通AI5应助meimei采纳,获得10
28秒前
28秒前
iidae完成签到,获得积分10
31秒前
溶胶发布了新的文献求助10
31秒前
乐乐应助小小鱼采纳,获得10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776680
求助须知:如何正确求助?哪些是违规求助? 3322161
关于积分的说明 10208892
捐赠科研通 3037360
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797614
科研通“疑难数据库(出版商)”最低求助积分说明 757921