亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

From Traditional to Foundation Models: A Survey for Land Use and Land Cover Hyperspectral Image Classification

作者
Radhesyam Vaddi,Boggavarapu Phaneendra Kumar Lakshmi Narasimha,Soma Mitra,Sushmita Mitra,Lorenzo Bruzzone,Swalpa Kumar Roy
出处
期刊:Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery [Wiley]
卷期号:15 (4)
标识
DOI:10.1002/widm.70049
摘要

ABSTRACT Hyperspectral remote sensing image classification is one of the key research areas of the remote sensing community. The high dimensionality, complex structure of data, and availability of fewer training samples hinder classification performance. Traditional machine learning approaches focus mainly on feature extraction for hyperspectral image classification. The complex relationships among pixels, nonlinearity, and material complexity could not be established with these approaches. This results in a suboptimal solution for fewer training samples in hyperspectral images. Recent advances in deep architectures provide means to improve performance and analyze complex patterns effectively, which were challenging with traditional approaches. The present research systematically describes deep learning models, from basic convolutional neural networks to transfer learning, ensemble learning, attention networks and graph nets. Also, advanced transformer approaches such as Mamba architectures, foundation models and vision‐language models for hyperspectral images with a specific emphasis on land use and land cover mapping. These advanced approaches provide efficient classification and real‐time processing capabilities that allow solutions to other different real‐world applications like agriculture, urban mapping, forestry, and the environment. This research also compares key state‐of‐the‐art methodologies, highlights research challenges, and offers future directions for efficient and accurate classification. This review endorses assimilating multisource data, developing lightweight models for resource‐constrained environments, and progressing explainable deep learning frameworks to improve classification performance. This research also serves as a useful reference for researchers in the hyperspectral remote sensing community, supporting the determination of the most appropriate classification technique specific to a particular remote sensing application. This article is categorized under: Technologies > Classification Technologies > Machine Learning Technologies > Artificial Intelligence
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yl完成签到 ,获得积分10
13秒前
小丸子和zz完成签到 ,获得积分10
15秒前
动听的荧完成签到 ,获得积分10
17秒前
18秒前
斯文败类应助小妮子采纳,获得10
54秒前
Jayzie完成签到 ,获得积分10
55秒前
1分钟前
小妮子发布了新的文献求助10
1分钟前
1分钟前
调皮剑鬼发布了新的文献求助10
1分钟前
小马甲应助调皮剑鬼采纳,获得10
1分钟前
1分钟前
smottom应助firesquall采纳,获得10
1分钟前
CipherSage应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
yipmyonphu完成签到,获得积分10
2分钟前
共享精神应助京刹而语采纳,获得10
2分钟前
超帅的碱完成签到,获得积分10
3分钟前
吉吉国王完成签到 ,获得积分10
3分钟前
京刹而语完成签到,获得积分10
4分钟前
4分钟前
4分钟前
京刹而语发布了新的文献求助10
5分钟前
5分钟前
5分钟前
领导范儿应助凳子齐不齐采纳,获得10
5分钟前
Imran完成签到,获得积分10
6分钟前
嘎嘣脆完成签到 ,获得积分10
6分钟前
热心易绿完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
慕青应助吴迪采纳,获得10
7分钟前
华仔应助小饶采纳,获得10
7分钟前
7分钟前
7分钟前
7分钟前
7分钟前
吴迪发布了新的文献求助10
7分钟前
Fairy完成签到,获得积分10
7分钟前
英姑应助酷酷的大米采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603317
求助须知:如何正确求助?哪些是违规求助? 4688370
关于积分的说明 14853520
捐赠科研通 4690329
什么是DOI,文献DOI怎么找? 2540661
邀请新用户注册赠送积分活动 1507001
关于科研通互助平台的介绍 1471609