Revelation and Prediction of Atmospheric Pollutant Photolysis on Particulate Matter with Deterministic Learning Based on Infrared Spectra

作者
Yanxia Wang,Hong Wang,Yanjuan Sun,Xinyan Liu,Fan Dong
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:59 (44): 23895-23904
标识
DOI:10.1021/acs.est.5c09256
摘要

Revealing nitrate photolysis on atmospheric particulate matter (PM), which generates secondary NOx and contributes to haze, acid rain, and daytime HONO formation, offers crucial insights into regulating regional air quality. While in situ spectroscopic techniques are useful to reveal photolysis mechanisms on single-component PM surfaces, it remains challenging to infer the photolysis behavior of mixed PM in real environments and quantify the influencing factors. To mitigate this challenge, we herein utilized artificial intelligence (AI) to capture time-dependent spectral variations, enabling the prediction and analysis of nitrate photolysis in complex atmospheric systems. Specifically, the deterministic learning approach, a novel machine learning (ML) algorithm specialized in modeling and analyzing the nonlinear systems, was innovatively applied to extract critical dynamic characteristic curves from time-series infrared spectra. Taking NH4NO3 photolysis on mineral dust as an example, we developed a spectroscopy-based ML approach that relies on single-component PM data sets and demonstrates its broad applicability by enabling direct prediction of nitrate photolysis trends across diverse mixed-source PMs without experimental measurements. In addition to the predominant contribution of photoactive TiO2 and Fe3O4 to nitrate photolysis by dynamic characteristic curve analysis, we also uncovered and experimentally validated a significant but overlooked inhibitory mechanism exerted by carbonates on these components. This work advances the integration of AI with atmospheric research, offering new perspectives for predicting and analyzing multisystem interactions in atmospheric environments while reducing the reliance on extensive experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tiantian完成签到,获得积分10
刚刚
relax完成签到 ,获得积分10
2秒前
小二郎应助wrimer采纳,获得10
2秒前
3秒前
科研通AI6应助cloud采纳,获得10
3秒前
4秒前
大个应助gjy采纳,获得10
5秒前
wh完成签到,获得积分10
6秒前
6秒前
9秒前
SciGPT应助旺旺小面包采纳,获得10
9秒前
9秒前
冷酷凝梦完成签到,获得积分10
10秒前
10秒前
体贴香岚发布了新的文献求助10
11秒前
高兴的幻竹完成签到,获得积分10
13秒前
852应助小短腿飞行员采纳,获得10
14秒前
企福发布了新的文献求助10
14秒前
浮游应助ajir采纳,获得10
15秒前
17秒前
17秒前
17秒前
香蕉觅云应助ocean12138采纳,获得10
17秒前
17秒前
17秒前
冷静寒风发布了新的文献求助10
18秒前
18秒前
Rui_Rui应助刘烨涵采纳,获得10
19秒前
淡然的衣完成签到 ,获得积分10
20秒前
21秒前
一往之前发布了新的文献求助10
21秒前
紫辰发布了新的文献求助10
22秒前
23秒前
温小满发布了新的文献求助10
23秒前
23秒前
leeyc发布了新的文献求助10
24秒前
24秒前
科研通AI6应助芬达采纳,获得10
24秒前
24秒前
小恐龙发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287819
求助须知:如何正确求助?哪些是违规求助? 4439834
关于积分的说明 13823167
捐赠科研通 4322057
什么是DOI,文献DOI怎么找? 2372274
邀请新用户注册赠送积分活动 1367845
关于科研通互助平台的介绍 1331344