High-performance photocatalytic reduction of Cr(VI) using a retrievable Fe-doped WO3/SiO2 heterostructure

光催化 材料科学 异质结 纳米复合材料 热液循环 化学工程 掺杂剂 兴奋剂 比表面积 可见光谱 催化作用 纳米材料 纳米颗粒 纳米技术 化学 光电子学 有机化学 工程类
作者
Natkritta Boonprakob,Duangdao Channei,Chen Zhao
标识
DOI:10.1186/s11671-023-03919-0
摘要

Abstract The enhancement of the photocatalytic performance of pristine WO 3 was systematically adjusted due to its fast recombination rate and low reduction potential. A designed heterostructure photocatalyst was necessarily synthesised by Fe 3+ metal ions doping into WO 3 structure with and composition modification. In this study, we synthesised a retrievable Fe-doped WO 3 /SiO 2 heterostructure using a surfactant-assisted hydrothermal method. This heterostructure was then employed as an effective photocatalyst for the removal of Cr(VI) under visible light irradiation. Enlarged photocatalytic reduction was observed over a synergetic 7.5 mol% Fe-doped WO 3 /SiO 2 -20 nanocomposite, resulting in dramatically increased activity compared with undoped WO 3 and SiO 2 nanomaterials under visible light illumination within 90 min. The presence of 7.5 mol% Fe 3+ ion dopant in WO 3 optimised electron–hole recombination, consequently reducing WO 3 photocorrosion. After adding SiO 2 nanoparticles, the binary WO 3 -SiO 2 nanocomposite played roles as both adsorbent and photocatalyst to increase specific surface area. Thus, the 7.5 mol% Fe-doped WO 3 /SiO 2 -20 nanocomposite catalyst had more active sites on the surface of catalyst, and enhanced photocatalytic reduction was significantly achieved. The results showed 91.1% photocatalytic reduction over the optimum photocatalyst, with a photoreduction kinetic rate of 21.1 × 10 –3 min −1 , which was approximately four times faster than pristine WO 3 . Therefore, the superior optimal photocatalyst demonstrated reusability, with activities decreasing by only 9.8% after five cycles. The high photocatalytic performance and excellent stability of our photocatalyst indicate great potential for water pollution treatments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
mr_beard完成签到 ,获得积分10
1秒前
1秒前
1秒前
Rain完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
SciGPT应助fanyouxin采纳,获得10
3秒前
lr发布了新的文献求助30
4秒前
小仙女发布了新的文献求助10
4秒前
小龙仔123发布了新的文献求助10
4秒前
小小威廉发布了新的文献求助10
5秒前
6秒前
云子完成签到,获得积分10
6秒前
6秒前
幽默阑悦完成签到,获得积分10
7秒前
慕青应助小糊涂采纳,获得10
7秒前
魔幻的采波完成签到,获得积分10
7秒前
慕青应助sakura采纳,获得10
8秒前
xiuxiuzhang发布了新的文献求助20
9秒前
9秒前
9秒前
若槻椋完成签到,获得积分10
10秒前
11秒前
烟花应助笨笨的鬼神采纳,获得10
11秒前
Super莹4589完成签到,获得积分20
11秒前
11秒前
小仙女完成签到,获得积分10
13秒前
调皮的乌冬面完成签到,获得积分10
13秒前
郑伟李发布了新的文献求助30
13秒前
HUO完成签到 ,获得积分10
13秒前
14秒前
Jerry完成签到 ,获得积分10
15秒前
史小霜发布了新的文献求助10
15秒前
16秒前
17秒前
阳光大有完成签到,获得积分10
18秒前
隐形曼青应助Bruce采纳,获得10
20秒前
Super莹4589发布了新的文献求助30
20秒前
香菜大姐发布了新的文献求助10
20秒前
20秒前
小糊涂发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5494750
求助须知:如何正确求助?哪些是违规求助? 4592509
关于积分的说明 14437364
捐赠科研通 4525317
什么是DOI,文献DOI怎么找? 2479362
邀请新用户注册赠送积分活动 1464148
关于科研通互助平台的介绍 1437177