CFPC: The Curbed Fake Point Collector to Pseudo-LiDAR-Based 3D Object Detection for Autonomous Vehicles

激光雷达 目标检测 点(几何) 对象(语法) 遥感 计算机科学 计算机视觉 人工智能 地理 模式识别(心理学) 数学 几何学
作者
Honghao Gao,Jie Shao,Muddesar Iqbal,Ye Wang,Zhengzhe Xiang
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:10
标识
DOI:10.1109/tvt.2024.3372940
摘要

3D object detection in autonomous driving systems perceives the surrounding environment and is the foundation for autonomous driving. Due to the sparsity inherent in point clouds in autonomous driving scenarios, LiDAR-based 3D object detection often fails to distinguish distant objects effectively. Addressing the issue of point cloud sparsity will enhance the detection range in autonomous driving scenarios. Pseudo point clouds have been used to enhance the ability of deep learning models to detect distant points. However, this approach has several shortcomings. In this paper, a curbed fake point collector (CFPC), which addresses the three issues caused by pseudo points, is proposed to support 3D object detection for autonomous vehicles. First, for noise points with inaccurate coordinates, the dead pixel checker (DPC) calculates the depth map gradient using the Sobel operator. This approach enables the deep learning model to identify noise points. Second, because of the excessive quantity of points, sparse prioritized local sampling (SPLS) reduces the number of input point clouds to a lightweight level that can be accommodated by computing devices with limited memory. This is achieved through grid-based random sampling and real-point-prioritized farthest point sampling. This module effectively samples an appropriate pseudo point cloud based on the density of points in local space. Third, with respect to interference among channels, channel mask set abstraction (CMSA) isolates channels describing different information within the point cloud using GroupMLP, which is an MLP that separates channels into their respective groups. Group separation facilitates the extraction of features without mutual influence, allocating half of the output channels to color information and the other half to geometric information. The effectiveness of our approach is demonstrated by the results of experiments conducted on the KITTI dataset. It is superior to the baseline in most situations, particularly in the categories of cars and riders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唱跳双c发布了新的文献求助10
1秒前
穆里尼奥发布了新的文献求助10
2秒前
2秒前
大众脸完成签到,获得积分10
3秒前
leaolf应助机灵易梦采纳,获得10
3秒前
vivin完成签到,获得积分10
3秒前
单纯的笋完成签到,获得积分10
3秒前
3秒前
橙子abcy完成签到,获得积分10
4秒前
5秒前
xunmi123发布了新的文献求助30
5秒前
荟萃分析举报Brot求助涉嫌违规
5秒前
燕麦片发布了新的文献求助30
6秒前
mei完成签到,获得积分10
7秒前
7秒前
学术小垃圾完成签到,获得积分10
7秒前
橙子abcy发布了新的文献求助30
8秒前
自然月亮完成签到 ,获得积分10
8秒前
zz完成签到,获得积分10
8秒前
NexusExplorer应助STP顶峰相见采纳,获得30
9秒前
我这晴空万里完成签到,获得积分20
9秒前
aylwtt完成签到,获得积分10
10秒前
Lin完成签到 ,获得积分10
10秒前
静心安逸完成签到,获得积分10
11秒前
李健应助钮傲白采纳,获得10
11秒前
12秒前
付2完成签到 ,获得积分20
12秒前
611完成签到,获得积分10
13秒前
启航发布了新的文献求助10
13秒前
成就的醉香完成签到,获得积分10
14秒前
穆里尼奥完成签到,获得积分10
15秒前
憨憨兔子发布了新的文献求助10
15秒前
15秒前
15秒前
lei完成签到,获得积分20
16秒前
17秒前
18秒前
羊羊羊发布了新的文献求助10
18秒前
科研通AI2S应助穆里尼奥采纳,获得10
19秒前
卞卞发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
La RSE en pratique 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4462641
求助须知:如何正确求助?哪些是违规求助? 3925722
关于积分的说明 12182200
捐赠科研通 3578179
什么是DOI,文献DOI怎么找? 1965847
邀请新用户注册赠送积分活动 1004562
科研通“疑难数据库(出版商)”最低求助积分说明 898975