Robust-stable scheduling in dynamic flow shops based on deep reinforcement learning

计算机科学 强化学习 稳健性(进化) 启发式 调度(生产过程) 流水车间调度 数学优化 作业车间调度 人工智能 机器学习 地铁列车时刻表 数学 生物化学 基因 操作系统 化学
作者
Felix Grumbach,Anna Müller,Pascal Reusch,Sebastian Trojahn
出处
期刊:Journal of Intelligent Manufacturing [Springer Nature]
卷期号:35 (2): 667-686 被引量:27
标识
DOI:10.1007/s10845-022-02069-x
摘要

Abstract This proof-of-concept study provides a novel method for robust-stable scheduling in dynamic flow shops based on deep reinforcement learning (DRL) implemented with OpenAI frameworks. In realistic manufacturing environments, dynamic events endanger baseline schedules, which can require a cost intensive re-scheduling. Extensive research has been done on methods for generating proactive baseline schedules to absorb uncertainties in advance and in balancing the competing metrics of robustness and stability. Recent studies presented exact methods and heuristics based on Monte Carlo experiments (MCE), both of which are very computationally intensive. Furthermore, approaches based on surrogate measures were proposed, which do not explicitly consider uncertainties and robustness metrics. Surprisingly, DRL has not yet been scientifically investigated for generating robust-stable schedules in the proactive stage of production planning. The contribution of this article is a proposal on how DRL can be applied to manipulate operation slack times by stretching or compressing plan durations. The method is demonstrated using different flow shop instances with uncertain processing times, stochastic machine failures and uncertain repair times. Through a computational study, we found that DRL agents achieve about 98% result quality but only take about 2% of the time compared to traditional metaheuristics. This is a promising advantage for the use in real-time environments and supports the idea of improving proactive scheduling methods with machine learning based techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZPH发布了新的文献求助10
刚刚
1秒前
1秒前
快乐源泉完成签到 ,获得积分10
1秒前
Jeannie完成签到,获得积分10
1秒前
duanduan123完成签到,获得积分10
1秒前
蒋若风发布了新的文献求助10
2秒前
小豹子完成签到,获得积分10
2秒前
舒适的藏花完成签到 ,获得积分10
2秒前
壮观夜南发布了新的文献求助10
3秒前
Hello应助含糊的茹妖采纳,获得10
3秒前
小二郎应助张志超采纳,获得10
3秒前
3秒前
4秒前
4秒前
逍遥子完成签到,获得积分10
4秒前
车车完成签到,获得积分10
4秒前
NatureLee发布了新的文献求助10
4秒前
duanduan123发布了新的文献求助10
5秒前
Eon发布了新的文献求助10
5秒前
multi发布了新的文献求助10
5秒前
xuan发布了新的文献求助30
5秒前
wjj发布了新的文献求助20
5秒前
5秒前
6秒前
wenji完成签到,获得积分10
7秒前
Karma完成签到,获得积分10
7秒前
强无敌发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
JamesPei应助purple采纳,获得10
7秒前
田様应助早日毕业采纳,获得10
7秒前
8秒前
佛人世间完成签到,获得积分10
9秒前
自然冥幽完成签到,获得积分10
10秒前
11发布了新的文献求助40
10秒前
Owen应助天涯比邻星采纳,获得10
11秒前
112完成签到,获得积分10
11秒前
天天快乐应助yy采纳,获得10
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608560
求助须知:如何正确求助?哪些是违规求助? 4693225
关于积分的说明 14877335
捐赠科研通 4717884
什么是DOI,文献DOI怎么找? 2544255
邀请新用户注册赠送积分活动 1509400
关于科研通互助平台的介绍 1472836