Local diffusion in the extracellular space of the brain

细胞外基质 曲折 细胞外 扩散 热扩散率 生物物理学 细胞外液 化学 血管周围间隙 间隙 神经科学 纳米技术 材料科学 解剖 生物 物理 多孔性 生物化学 热力学 有机化学 内分泌学 量子力学
作者
Jan Tønnesen,Sabina Hrabětová,Federico N. Soria
出处
期刊:Neurobiology of Disease [Elsevier BV]
卷期号:177: 105981-105981 被引量:27
标识
DOI:10.1016/j.nbd.2022.105981
摘要

The brain extracellular space (ECS) is a vast interstitial reticulum of extreme morphological complexity, composed of narrow gaps separated by local expansions, enabling interconnected highways between neural cells. Constituting on average 20% of brain volume, the ECS is key for intercellular communication, and understanding its diffusional properties is of paramount importance for understanding the brain. Within the ECS, neuroactive substances travel predominantly by diffusion, spreading through the interstitial fluid and the extracellular matrix scaffold after being focally released. The nanoscale dimensions of the ECS render it unresolvable by conventional live tissue compatible imaging methods, and historically diffusion of tracers has been used to indirectly infer its structure. Novel nanoscopic imaging techniques now show that the ECS is a highly dynamic compartment, and that diffusivity in the ECS is more heterogeneous than anticipated, with great variability across brain regions and physiological states. Diffusion is defined primarily by the local ECS geometry, and secondarily by the viscosity of the interstitial fluid, including the obstructive and binding properties of the extracellular matrix. ECS volume fraction and tortuosity both strongly determine diffusivity, and each can be independently regulated e.g. through alterations in glial morphology and the extracellular matrix composition. Here we aim to provide an overview of our current understanding of the ECS and its diffusional properties. We highlight emerging technological advances to respectively interrogate and model diffusion through the ECS, and point out how these may contribute in resolving the remaining enigmas of the ECS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
My完成签到,获得积分10
3秒前
萧七七发布了新的文献求助10
3秒前
生动的鹰完成签到,获得积分10
3秒前
马库拉格发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
bb发布了新的文献求助10
6秒前
xiaoyuan发布了新的文献求助20
6秒前
义气的如豹完成签到,获得积分10
6秒前
万能图书馆应助如意草丛采纳,获得10
6秒前
6秒前
NIUB完成签到,获得积分10
6秒前
友好盼波完成签到,获得积分10
7秒前
星辰大海应助莉莉采纳,获得30
7秒前
胡图图完成签到 ,获得积分10
7秒前
XT666完成签到,获得积分10
7秒前
7秒前
10秒前
ilzhuzhu发布了新的文献求助30
10秒前
Jindyla完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
马外奥发布了新的文献求助10
10秒前
huohuo143完成签到,获得积分10
11秒前
vvvaee完成签到 ,获得积分10
11秒前
shuaishuyi完成签到,获得积分10
12秒前
lucky完成签到,获得积分10
13秒前
shen发布了新的文献求助10
13秒前
wy完成签到,获得积分10
13秒前
刘小新完成签到,获得积分10
13秒前
风时因絮完成签到,获得积分10
13秒前
啊撒网大大e完成签到,获得积分10
14秒前
菠萝包完成签到 ,获得积分10
14秒前
狂野世立完成签到,获得积分10
16秒前
如意草丛发布了新的文献求助10
16秒前
莉莉完成签到,获得积分20
17秒前
17秒前
所所应助萧七七采纳,获得10
17秒前
高分求助中
ISCN 2024 - An International System for Human Cytogenomic Nomenclature (2024) 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788621
求助须知:如何正确求助?哪些是违规求助? 3333855
关于积分的说明 10265174
捐赠科研通 3049972
什么是DOI,文献DOI怎么找? 1673781
邀请新用户注册赠送积分活动 802206
科研通“疑难数据库(出版商)”最低求助积分说明 760549