已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DDaTR: Dynamic Difference-Aware Temporal Residual Network for Longitudinal Radiology Report Generation

残余物 计算机科学 医学物理学 医学 算法
作者
Shanshan Song,Hui Tang,Honglong Yang,Xiaomeng Li
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:44 (12): 5345-5357 被引量:1
标识
DOI:10.1109/tmi.2025.3591364
摘要

Radiology Report Generation (RRG) automates the creation of radiology reports from medical imaging, enhancing the efficiency of the reporting process. Longitudinal Radiology Report Generation (LRRG) extends RRG by incorporating the ability to compare current and prior exams, facilitating the tracking of temporal changes in clinical findings. Existing LRRG approaches only extract features from prior and current images using a visual pre-trained encoder, which are then concatenated to generate the final report. However, these methods struggle to effectively capture both spatial and temporal correlations during the feature extraction process. Consequently, the extracted features inadequately capture the information of difference across exams and thus underrepresent the expected progressions, leading to sub-optimal performance in LRRG. To address this, we develop a novel dynamic difference-aware temporal residual network (DDaTR). In DDaTR, we introduce two modules at each stage of the visual encoder to capture multi-level spatial correlations. The Dynamic Feature Alignment Module (DFAM) is designed to align prior features across modalities for the integrity of prior clinical information. Prompted by the enriched prior features, the dynamic difference-aware module (DDAM) captures favorable difference information by identifying relationships across exams. Furthermore, our DDaTR employs the dynamic residual network to unidirectionally transmit longitudinal information, effectively modeling temporal correlations. Extensive experiments demonstrated superior performance over existing methods on three benchmarks, proving its efficacy in both RRG and LRRG tasks. Our code is published at https://github.com/xmed-lab/DDaTR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
2秒前
cc完成签到 ,获得积分10
2秒前
ceeray23应助科研通管家采纳,获得10
3秒前
ceeray23应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
ceeray23应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得30
3秒前
ceeray23应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
yyds应助科研通管家采纳,获得80
4秒前
4秒前
OvO_4577发布了新的文献求助10
5秒前
和谐的熊猫完成签到,获得积分10
5秒前
会飞的螃蟹完成签到,获得积分10
5秒前
6秒前
ghfgjjf完成签到 ,获得积分10
8秒前
小昊完成签到 ,获得积分10
9秒前
li完成签到,获得积分10
10秒前
14秒前
暮然完成签到,获得积分10
16秒前
17秒前
李怀璟发布了新的文献求助10
20秒前
22秒前
guo关闭了guo文献求助
24秒前
Lucas应助李怀璟采纳,获得10
28秒前
几度雨停发布了新的文献求助10
28秒前
28秒前
29秒前
弋沨发布了新的文献求助10
33秒前
34秒前
可爱的函函应助solar@2030采纳,获得10
35秒前
shine完成签到,获得积分10
35秒前
芽芽鸭完成签到,获得积分20
38秒前
吞吞完成签到 ,获得积分10
38秒前
Tania完成签到,获得积分10
39秒前
芽芽鸭发布了新的文献求助10
40秒前
41秒前
xiaxia发布了新的文献求助10
42秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502531
求助须知:如何正确求助?哪些是违规求助? 4598345
关于积分的说明 14463856
捐赠科研通 4531936
什么是DOI,文献DOI怎么找? 2483722
邀请新用户注册赠送积分活动 1466943
关于科研通互助平台的介绍 1439576