DDaTR: Dynamic Difference-aware Temporal Residual Network for Longitudinal Radiology Report Generation

残余物 计算机科学 医学物理学 医学 算法
作者
Shanshan Song,Hui Tang,Honglong Yang,Xiaomeng Li
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tmi.2025.3591364
摘要

Radiology Report Generation (RRG) automates the creation of radiology reports from medical imaging, enhancing the efficiency of the reporting process. Longitudinal Radiology Report Generation (LRRG) extends RRG by incorporating the ability to compare current and prior exams, facilitating the tracking of temporal changes in clinical findings. Existing LRRG approaches only extract features from prior and current images using a visual pre-trained encoder, which are then concatenated to generate the final report. However, these methods struggle to effectively capture both spatial and temporal correlations during the feature extraction process. Consequently, the extracted features inadequately capture the information of difference across exams and thus underrepresent the expected progressions, leading to sub-optimal performance in LRRG. To address this, we develop a novel dynamic difference-aware temporal residual network (DDaTR). In DDaTR, we introduce two modules at each stage of the visual encoder to capture multi-level spatial correlations. The Dynamic Feature Alignment Module (DFAM) is designed to align prior features across modalities for the integrity of prior clinical information. Prompted by the enriched prior features, the dynamic difference-aware module (DDAM) captures favorable difference information by identifying relationships across exams. Furthermore, our DDaTR employs the dynamic residual network to unidirectionally transmit longitudinal information, effectively modeling temporal correlations. Extensive experiments demonstrated superior performance over existing methods on three benchmarks, proving its efficacy in both RRG and LRRG tasks. Our code is published at https://github.com/xmed-lab/DDaTR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科科完成签到 ,获得积分10
刚刚
贪玩星完成签到,获得积分10
1秒前
舒服的井发布了新的文献求助10
1秒前
皮汤汤完成签到 ,获得积分10
1秒前
心灵美萝卜完成签到,获得积分10
1秒前
薛十七应助luzizi采纳,获得10
2秒前
守护完成签到,获得积分20
2秒前
能干的吐司完成签到,获得积分10
3秒前
老实念芹发布了新的文献求助10
3秒前
3秒前
狂野元枫完成签到 ,获得积分10
3秒前
文艺的冬卉完成签到,获得积分20
4秒前
地平完成签到,获得积分10
4秒前
李博士完成签到,获得积分10
4秒前
unborn完成签到 ,获得积分10
4秒前
双月完成签到,获得积分10
5秒前
Conccuc完成签到,获得积分10
5秒前
细腻冰烟完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
莫名完成签到,获得积分10
6秒前
星期八的小马完成签到,获得积分10
7秒前
xxxx完成签到,获得积分10
8秒前
9秒前
9秒前
elgar612发布了新的文献求助10
9秒前
9秒前
weiweiwu12完成签到,获得积分10
9秒前
小石头完成签到,获得积分10
10秒前
葡萄又酸又甜完成签到 ,获得积分10
10秒前
Levieus应助开心potato采纳,获得30
11秒前
mumu完成签到,获得积分10
11秒前
晗晗完成签到 ,获得积分10
11秒前
逆光完成签到 ,获得积分10
12秒前
guoguoguo完成签到,获得积分10
12秒前
嘟嘟嘟发布了新的文献求助10
13秒前
GU完成签到,获得积分10
13秒前
自觉士萧完成签到,获得积分10
13秒前
予秋发布了新的文献求助10
13秒前
自由饼干完成签到,获得积分10
14秒前
威猛先生发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5079983
求助须知:如何正确求助?哪些是违规求助? 4298027
关于积分的说明 13389776
捐赠科研通 4121516
什么是DOI,文献DOI怎么找? 2257145
邀请新用户注册赠送积分活动 1261455
关于科研通互助平台的介绍 1195563