PPFL: A Personalized Federated Learning Framework for Heterogeneous Population

计算机科学 人口 医学 环境卫生
作者
Hao Di,Yi Yang,H. Ye,Xiangyu Chang
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2023.0376
摘要

Personalization aims to characterize individual preferences and is widely applied across many fields. However, conventional personalized methods operate in a centralized manner, potentially exposing raw data when pooling individual information. In this paper, with privacy considerations, we develop a flexible and interpretable personalized framework within the paradigm of federated learning, called population personalized federated learning (PPFL). By leveraging “canonical models” to capture fundamental characteristics of a heterogeneous population and employing “membership vectors” to reveal clients’ preferences, PPFL models heterogeneity as clients’ varying preferences for these characteristics. This approach provides substantial insights into client characteristics, which are lacking in existing personalized federated learning (PFL) methods. Furthermore, we explore the relationship between PPFL and three main branches of PFL methods: clustered FL, multitask PFL, and decoupling PFL, and we demonstrate the advantages of PPFL. To solve PPFL (a nonconvex optimization problem with linear constraints), we propose a novel random block coordinate descent algorithm and establish its convergence properties. We conduct experiments in both pathological and practical data sets, and the results validate the effectiveness of PPFL. History: Accepted by Ram Ramesh, Area Editor for Data Science and Machine Learning. Funding: This work was supported by the National Natural Science Foundation for Outstanding Young Scholars of China [Grant 72122018], the National Natural Science Foundation of China [Grant 724B2027], the Humanities and Social Science Fund of the Ministry of Education of China [Grant 22JJD110001], the Shaanxi Provincial Science and Technology Department [Grant 2021JC-01], and the National Key Research and Development Project of China [Grant 2022YFA1004002]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0376 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0376 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助整齐荟采纳,获得10
1秒前
那兰完成签到,获得积分10
1秒前
高大寒梦发布了新的文献求助10
2秒前
2秒前
2秒前
笑点低的乌完成签到 ,获得积分10
2秒前
2秒前
了一李发布了新的文献求助10
3秒前
顺利从霜完成签到,获得积分10
3秒前
4秒前
4秒前
6秒前
小小发布了新的文献求助10
6秒前
orixero应助李超强采纳,获得10
6秒前
ww发布了新的文献求助10
6秒前
6秒前
wanci应助shy采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
8秒前
ddd发布了新的文献求助10
8秒前
dongzetao发布了新的文献求助10
8秒前
顺利从霜发布了新的文献求助10
9秒前
橙黄橘绿完成签到,获得积分10
9秒前
彭彭发布了新的文献求助10
9秒前
9秒前
xiaosi发布了新的文献求助10
9秒前
10秒前
10秒前
虚幻的又蓝完成签到,获得积分10
10秒前
橙黄橘绿发布了新的文献求助10
11秒前
SciGPT应助asda采纳,获得10
11秒前
11秒前
cJLin发布了新的文献求助10
13秒前
整齐荟发布了新的文献求助10
13秒前
14秒前
了一李完成签到,获得积分10
14秒前
14秒前
科研通AI2S应助崔京成采纳,获得10
14秒前
shenyanlei发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605988
求助须知:如何正确求助?哪些是违规求助? 4690446
关于积分的说明 14863762
捐赠科研通 4703200
什么是DOI,文献DOI怎么找? 2542382
邀请新用户注册赠送积分活动 1507911
关于科研通互助平台的介绍 1472161