PPFL: A Personalized Federated Learning Framework for Heterogeneous Population

计算机科学 人口 医学 环境卫生
作者
Di Hao,Yi Yang,H. Ye,Xiangyu Chang
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2023.0376
摘要

Personalization aims to characterize individual preferences and is widely applied across many fields. However, conventional personalized methods operate in a centralized manner, potentially exposing raw data when pooling individual information. In this paper, with privacy considerations, we develop a flexible and interpretable personalized framework within the paradigm of federated learning, called population personalized federated learning (PPFL). By leveraging “canonical models” to capture fundamental characteristics of a heterogeneous population and employing “membership vectors” to reveal clients’ preferences, PPFL models heterogeneity as clients’ varying preferences for these characteristics. This approach provides substantial insights into client characteristics, which are lacking in existing personalized federated learning (PFL) methods. Furthermore, we explore the relationship between PPFL and three main branches of PFL methods: clustered FL, multitask PFL, and decoupling PFL, and we demonstrate the advantages of PPFL. To solve PPFL (a nonconvex optimization problem with linear constraints), we propose a novel random block coordinate descent algorithm and establish its convergence properties. We conduct experiments in both pathological and practical data sets, and the results validate the effectiveness of PPFL. History: Accepted by Ram Ramesh, Area Editor for Data Science and Machine Learning. Funding: This work was supported by the National Natural Science Foundation for Outstanding Young Scholars of China [Grant 72122018], the National Natural Science Foundation of China [Grant 724B2027], the Humanities and Social Science Fund of the Ministry of Education of China [Grant 22JJD110001], the Shaanxi Provincial Science and Technology Department [Grant 2021JC-01], and the National Key Research and Development Project of China [Grant 2022YFA1004002]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0376 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0376 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
岁月旧曾谙完成签到,获得积分10
刚刚
刚刚
Johnlian完成签到 ,获得积分10
1秒前
聪慧板凳完成签到,获得积分10
1秒前
仁爱觅风完成签到,获得积分10
1秒前
mengmenglv完成签到 ,获得积分0
2秒前
waynechang完成签到,获得积分10
2秒前
认真丹亦完成签到 ,获得积分10
4秒前
Danish完成签到,获得积分10
5秒前
无限萃完成签到,获得积分10
5秒前
6秒前
现代完成签到,获得积分10
7秒前
小蜜峰儿完成签到 ,获得积分10
8秒前
行走的猫完成签到 ,获得积分10
10秒前
Leah发布了新的文献求助10
10秒前
WLWLW应助科研通管家采纳,获得10
13秒前
ccmxigua应助科研通管家采纳,获得10
13秒前
Orange应助科研通管家采纳,获得10
13秒前
13秒前
15秒前
疯狂的绝山完成签到 ,获得积分10
15秒前
小花小宝和阿飞完成签到 ,获得积分10
17秒前
Kai完成签到 ,获得积分10
20秒前
inshialla完成签到 ,获得积分10
21秒前
自由冬亦完成签到,获得积分10
22秒前
小二郎应助Q喂采纳,获得10
22秒前
xuelanghu完成签到,获得积分10
22秒前
皮皮完成签到 ,获得积分10
23秒前
25秒前
LIKUN完成签到,获得积分10
30秒前
dmgy发布了新的文献求助10
33秒前
酷波er应助抗体药物偶联采纳,获得10
35秒前
tongkaibing完成签到,获得积分10
36秒前
dong完成签到 ,获得积分10
37秒前
Leah完成签到,获得积分10
38秒前
44秒前
寒水完成签到 ,获得积分10
44秒前
想人陪的万言完成签到,获得积分10
44秒前
儒雅路人完成签到,获得积分10
45秒前
保持理智完成签到,获得积分10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4742598
求助须知:如何正确求助?哪些是违规求助? 4092256
关于积分的说明 12657568
捐赠科研通 3803370
什么是DOI,文献DOI怎么找? 2099751
邀请新用户注册赠送积分活动 1125193
关于科研通互助平台的介绍 1001452