At present, the development of power cables shows three notable trends: higher voltage, longer distance and more complex environments. Against this backdrop, the limitations of traditional detection techniques in locating local defects have become increasingly apparent. Frequency Domain Reflectometry (FDR) has garnered sustained research attention both domestically and internationally due to its high sensitivity and accuracy in detecting localized defects. This paper aims to compare the defect localization effectiveness of the Fast Fourier Transform (FFT) method and the Inverse Fast Fourier Transform (IFFT) method within FDR. First, the differences between the two methods are analyzed from a theoretical perspective. Then, field tests are conducted on cables of varying voltage levels and lengths, with comparisons made using parameters such as full width at half maximum (FWHM) and signal-to-noise ratio (SNR). The results indicate that the FFT method is more suitable for low-interference or short cables, while the IFFT method is more suitable for high-noise, high-resolution, or long cables.