Neutrophil extracellular trapping network-associated biomarkers in liver fibrosis: machine learning and experimental validation

中性粒细胞胞外陷阱 肝纤维化 细胞外 计算机科学 纤维化 医学 计算生物学 免疫学 病理 生物信息学 人工智能 生物 炎症 细胞生物学
作者
Yanbo Li,Yanping Lu,Bohao Huang,Chao Lei,Qingjuan Wu,Jiuchong Wang
出处
期刊:Journal of Translational Medicine [BioMed Central]
卷期号:23 (1)
标识
DOI:10.1186/s12967-025-06819-2
摘要

The diagnostic and therapeutic potential of neutrophil extracellular traps (NETs) in liver fibrosis (LF) has not been fully explored. We aim to screen and verify NETs-related liver fibrosis biomarkers through machine learning. In order to obtain NETs-related differentially expressed genes (NETs-DEGs), differential analysis and WGCNA analysis were performed on the GEO dataset (GSE84044, GSE49541) and the NETs dataset. Enrichment analysis and protein interaction analysis were used to reveal the candidate genes and potential mechanisms of NETs-related liver fibrosis. Biomarkers were screened using SVM-RFE and Boruta machine learning algorithms, followed by immune infiltration analysis. A multi-stage model of fibrosis in mice was constructed, and neutrophil infiltration, NETs accumulation and NETs-related biomarkers were characterized by immunohistochemistry, immunofluorescence, flow cytometry and qPCR. Finally, the molecular regulatory network and potential drugs of biomarkers were predicted. A total of 166 NETs-DEGs were identified. Through enrichment analysis, these genes were mainly enriched in chemokine signaling pathway and cytokine-cytokine receptor interaction pathway. Machine learning screened CCL2 as a NETs-related liver fibrosis biomarker, involved in ribosome-related processes, cell cycle regulation and allograft rejection pathways. Immune infiltration analysis showed that there were significant differences in 22 immune cell subtypes between fibrotic samples and healthy samples, including neutrophils mainly related to NETs production. The results of in vivo experiments showed that neutrophil infiltration, NETs accumulation and CCL2 level were up-regulated during fibrosis. A total of 5 miRNAs, 2 lncRNAs, 20 function-related genes and 6 potential drugs were identified based on CCL2. This study identified CCL2 as a biomarker for nets-related liver fibrosis, providing a new perspective for understanding the mechanisms of nets-mediated fibrosis and promoting therapeutic discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助一一采纳,获得10
刚刚
Daijh发布了新的文献求助10
刚刚
敏感蓝天完成签到,获得积分20
刚刚
1秒前
倩倩14完成签到,获得积分20
1秒前
Lexie完成签到,获得积分10
2秒前
2秒前
Loki完成签到,获得积分10
2秒前
Cactus发布了新的文献求助10
3秒前
单身的紫烟完成签到,获得积分10
3秒前
打打应助swy采纳,获得10
4秒前
Samuel完成签到,获得积分10
4秒前
pomelo发布了新的文献求助10
4秒前
完美世界应助勤奋的冰枫采纳,获得10
5秒前
华仔应助王媛采纳,获得30
7秒前
7秒前
缓慢平蓝发布了新的文献求助10
7秒前
Monsters发布了新的文献求助10
7秒前
岩岩岩完成签到,获得积分10
7秒前
Chen发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
JokerCing完成签到,获得积分10
10秒前
Daijh完成签到,获得积分10
10秒前
10秒前
周士翔发布了新的文献求助10
11秒前
11秒前
缓慢平蓝完成签到,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助30
11秒前
王小茗完成签到,获得积分10
11秒前
12秒前
zxf完成签到,获得积分20
12秒前
Cactus发布了新的文献求助10
14秒前
yh关注了科研通微信公众号
14秒前
LIULIU发布了新的文献求助10
14秒前
执着鸡翅发布了新的文献求助20
14秒前
ZHU关闭了ZHU文献求助
15秒前
三金发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5071945
求助须知:如何正确求助?哪些是违规求助? 4292467
关于积分的说明 13374776
捐赠科研通 4113406
什么是DOI,文献DOI怎么找? 2252418
邀请新用户注册赠送积分活动 1257312
关于科研通互助平台的介绍 1190103