纤维二糖
化学
溶剂化
氢键
溶解
离子液体
位阻效应
核磁共振波谱
溶剂化壳
核磁共振谱数据库
离子键合
无机化学
溶剂
结晶学
纤维素
离子
有机化学
分子
谱线
催化作用
物理
天文
纤维素酶
作者
Jinming Zhang,Hao Zhang,Jin Wu,Jun Zhang,Jiasong He,Junfeng Xiang
摘要
The dissolution mechanism of cellulose in ionic liquids has been investigated by using cellobiose and 1-ethyl-3-methylimidazolium acetate (EmimAc) as a model system under various conditions with conventional and variable-temperature NMR spectroscopy. In DMSO-d6 solution, NMR data of the model system clearly suggest that hydrogen bonding is formed between hydroxyls of cellobiose and both anion and cation of EmimAc. The CH3COO− anion favors the formation of hydrogen bonds with hydrogen atoms of hydroxyls, and the aromatic protons in bulky cation [Emim]+, especially the most acidic H2, prefer to associate with the oxygen atoms of hydroxyls with less steric hindrance, while after acetylation of all hydroxyls in cellobiose the interactions between cellobiose octaacetate and EmimAc become very weak, implying that hydrogen bonding is the major reason of cellobiose solvation in EmimAc. Meanwhile the stoichiometric ratio of EmimAc/hydroxyl is estimated to be between 3:4 and 1:1 in the primary solvation shell, suggesting that there should be one anion or cation to form hydrogen bonds with two hydroxyl groups simultaneously. In situ and variable-temperature NMR spectra suggest the above mechanism also works in the real system.
科研通智能强力驱动
Strongly Powered by AbleSci AI