清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Development and validation of robust metabolism‐related gene signature in the prognostic prediction of hepatocellular carcinoma

列线图 肝细胞癌 医学 肿瘤科 内科学 比例危险模型 接收机工作特性 队列 危险系数 弗雷明翰风险评分 置信区间 Lasso(编程语言) 疾病 计算机科学 万维网
作者
Yangxun Pan,Deyao Zhang,Yuheng Chen,Huake Li,Jiongliang Wang,Ze Yuan,Li‐Yang Sun,Zhongguo Zhou,Minshan Chen,Yaojun Zhang,Dandan Hu
出处
期刊:Journal of Cellular and Molecular Medicine [Wiley]
卷期号:27 (7): 1006-1020 被引量:4
标识
DOI:10.1111/jcmm.17718
摘要

Abstract Hepatocellular carcinoma (HCC) is one of the most common malignant tumours worldwide. Given metabolic reprogramming in tumours was a crucial hallmark, several studies have demonstrated its value in the diagnostics and surveillance of malignant tumours. The present study aimed to identify a cluster of metabolism‐related genes to construct a prediction model for the prognosis of HCC. Multiple cohorts of HCC cases (466 cases) from public datasets were included in the present analysis. (GEO cohort) After identifying a list of metabolism‐related genes associated with prognosis, a risk score based on metabolism‐related genes was formulated via the LASSO‐Cox and LASSO‐pcvl algorithms. According to the risk score, patients were stratified into low‐ and high‐risk groups, and further analysis and validation were accordingly conducted. The results revealed that high‐risk patients had a significantly worse 5‐year overall survival (OS) than low‐risk patients in the GEO cohort. (30.0% vs. 57.8%; hazard ratio [HR], 0.411; 95% confidence interval [95% CI], 0.302–0.651; p < 0.001) This observation was confirmed in the external TCGA‐LIHC cohort. (34.5% vs. 54.4%; HR 0.452; 95% CI, 0.299–0.681; p < 0.001) To promote the predictive ability of the model, risk score, age, gender and tumour stage were integrated into a nomogram. According to the results of receiver operating characteristic curves and decision curves analysis, the nomogram score possessed a superior predictive ability than conventional factors, which indicate that the risk score combined with clinicopathological features was able to achieve a robust prediction for OS and improve the individualized clinical decision making of HCC patients. In conclusion, the metabolic genes related to OS were identified and developed a metabolism‐based predictive model for HCC. Through a series of bioinformatics and statistical analyses, the predictive ability of the model was approved.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辛普森完成签到,获得积分10
7秒前
木又完成签到 ,获得积分10
9秒前
时尚的冰棍儿完成签到 ,获得积分10
10秒前
Damon完成签到 ,获得积分10
21秒前
北笙完成签到 ,获得积分10
21秒前
白嫖论文完成签到 ,获得积分10
24秒前
vitamin完成签到 ,获得积分10
25秒前
刻苦的新烟完成签到 ,获得积分10
27秒前
31秒前
云木完成签到 ,获得积分10
32秒前
科研小白发布了新的文献求助10
34秒前
SH123完成签到 ,获得积分10
38秒前
ZH完成签到,获得积分10
39秒前
搜集达人应助科研小白采纳,获得10
43秒前
传奇3应助科研小白采纳,获得10
43秒前
聪慧芷巧发布了新的文献求助10
56秒前
HMR完成签到 ,获得积分10
57秒前
jitianxing完成签到,获得积分10
1分钟前
zhilianghui0807完成签到 ,获得积分10
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
火焰不聪明完成签到 ,获得积分10
1分钟前
畅快代柔完成签到 ,获得积分10
1分钟前
明亮豆芽完成签到 ,获得积分10
1分钟前
jitianxing发布了新的文献求助10
1分钟前
南风完成签到 ,获得积分10
1分钟前
CipherSage应助聪慧芷巧采纳,获得10
1分钟前
nano_yan完成签到,获得积分10
1分钟前
勤劳的颤完成签到 ,获得积分10
1分钟前
澄子完成签到 ,获得积分10
1分钟前
1分钟前
Microgan完成签到,获得积分10
1分钟前
先锋完成签到 ,获得积分10
2分钟前
xiaofeixia完成签到 ,获得积分10
2分钟前
火星上小土豆完成签到 ,获得积分10
2分钟前
番茄小超人2号完成签到 ,获得积分10
2分钟前
zhiwei完成签到 ,获得积分10
2分钟前
粗心的飞槐完成签到 ,获得积分10
2分钟前
ECHO完成签到,获得积分10
2分钟前
maclogos完成签到,获得积分10
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795624
求助须知:如何正确求助?哪些是违规求助? 3340681
关于积分的说明 10300956
捐赠科研通 3057185
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805449
科研通“疑难数据库(出版商)”最低求助积分说明 762626