Curved CMOS image sensors for enhanced imaging systems: focus on smartphone camera lens

图像传感器 镜头(地质) 光学(聚焦) 计算机科学 计算机视觉 摄像头模块 CMOS传感器 光圈(计算机存储器) 人工智能 视野 焦距 光学 物理 声学
作者
Wilfried Jahn,Tahar Mehri
标识
DOI:10.1117/12.2651198
摘要

Curved imaging sensors bring significant size, weight and cost reduction to imaging systems while mitigating off-axis optical aberrations, as opposed to current flat sensors. Unlocking these key features has captured the interest of major players over the last two decades. SILINA has been developing a CMOS Image Sensor (CIS) curving process, which adapts to various sensor characteristics. This enables to maximize the optical performance of every single imaging system. We have demonstrated the manufacturing of curved CMOS Front-Side Illuminated (FSI) and Back Side Illuminated (BSI), opening a new area of compact, fast, wide-angle and high-resolution optical lenses. This new degree of freedom offered to optical designer can significantly simplify optical systems through a significant improvement of the optical performance while simplifying the system architecture in many different ways. The field of view (FOV), the contrast, the aperture can be increased while optical aberrations can be minimized. At the end, the different costs related to manufacturing, metrology, integration, and alignment are reduced. This is of great importance for applications requiring compact and high resolution lens, notably in low-light environment. To quantify the gain brought by curved image sensor for smartphone camera lens, we are performing several comparative optical lens designs. We compare traditional flat-image sensor based camera lens to camera lens optimized specifically with a curved image sensor. In this paper, we present the result obtained on wide-angle smartphone camera lens design considering a spherical concave image sensor. We compare the optical characteristics and performance with a reference optical design using a flat image sensor. We discuss the various benefits in terms of optical performance and Z-stack reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
六的飞起发布了新的文献求助30
刚刚
燕燕于飞发布了新的文献求助10
1秒前
DOG完成签到,获得积分10
1秒前
我没那么郝完成签到,获得积分10
1秒前
2秒前
Akim应助包远锋采纳,获得10
2秒前
fy完成签到,获得积分10
2秒前
乐乐应助孤独的匕采纳,获得10
2秒前
852应助水聿采纳,获得10
3秒前
梅子完成签到,获得积分10
4秒前
陈慧青关注了科研通微信公众号
4秒前
激动的大山完成签到,获得积分10
4秒前
裘文献完成签到 ,获得积分10
5秒前
JET_Li完成签到,获得积分10
6秒前
6秒前
1128发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
8秒前
DE完成签到,获得积分10
9秒前
9秒前
singlestrand完成签到,获得积分10
9秒前
我是老大应助sdl采纳,获得10
10秒前
11秒前
IchenNG发布了新的文献求助10
12秒前
12秒前
12秒前
xxmol发布了新的文献求助10
12秒前
IchenNG发布了新的文献求助10
12秒前
我是老大应助科研通管家采纳,获得10
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
所所应助科研通管家采纳,获得10
12秒前
13秒前
小二郎应助科研通管家采纳,获得30
13秒前
13秒前
852应助科研通管家采纳,获得10
13秒前
在水一方应助科研通管家采纳,获得10
13秒前
IchenNG发布了新的文献求助10
13秒前
我学不进去了完成签到,获得积分10
13秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Single Element Semiconductors: Properties and Devices 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828567
求助须知:如何正确求助?哪些是违规求助? 3370964
关于积分的说明 10465587
捐赠科研通 3090872
什么是DOI,文献DOI怎么找? 1700578
邀请新用户注册赠送积分活动 817907
科研通“疑难数据库(出版商)”最低求助积分说明 770588