啮齿动物模型
啮齿动物
药理学
医学
主动脉瘤
化学
主动脉
内科学
生物
生态学
作者
Yongzhen Wei,Huan Jiang,Fengjuan Li,Chao Chai,Yaping Xu,Mengmeng Xing,Weiliang Deng,He Wang,Yuexin Zhu,Sen Yang,Yongquan Yu,Wenming Wang,Yan Wei,Yu Guo,Jinwei Tian,Jie Du,Zhikun Guo,Yuan Wang,Qiang Zhao
出处
期刊:Science Translational Medicine
[American Association for the Advancement of Science (AAAS)]
日期:2024-05-01
卷期号:16 (745): eadh1763-eadh1763
被引量:12
标识
DOI:10.1126/scitranslmed.adh1763
摘要
An abdominal aortic aneurysm (AAA) is a life-threatening cardiovascular disease. We identified plasma insulin-like growth factor 1 (IGF1) as an independent risk factor in patients with AAA by correlating plasma IGF1 with risk. Smooth muscle cell– or fibroblast-specific knockout of Igf1r , the gene encoding the IGF1 receptor (IGF1R), attenuated AAA formation in two mouse models of AAA induced by angiotensin II infusion or CaCl 2 treatment. IGF1R was activated in aortic aneurysm samples from human patients and mice with AAA. Systemic administration of IGF1C, a peptide fragment of IGF1, 2 weeks after disease development inhibited AAA progression in mice. Decreased AAA formation was linked to competitive inhibition of IGF1 binding to its receptor by IGF1C and modulation of downstream alpha serine/threonine protein kinase (AKT)/mammalian target of rapamycin signaling. Localized application of an IGF1C-loaded hydrogel was developed to reduce the side effects observed after systemic administration of IGF1C or IGF1R antagonists in the CaCl 2 -induced AAA mouse model. The inhibitory effect of the IGF1C-loaded hydrogel administered at disease onset on AAA formation was further evaluated in a guinea pig-to-rat xenograft model and in a sheep-to-minipig xenograft model of AAA formation. The therapeutic efficacy of IGF1C for treating AAA was tested through extravascular delivery in the sheep-to-minipig model with AAA established for 2 weeks. Percutaneous injection of the IGF1C-loaded hydrogel around the AAA resulted in improved vessel flow dynamics in the minipig aorta. These findings suggest that extravascular administration of IGF1R antagonists may have translational potential for treating AAA.
科研通智能强力驱动
Strongly Powered by AbleSci AI