A process-driven deep learning hydrological model for daily rainfall-runoff simulation

地表径流 环境科学 水文学(农业) 过程(计算) 水文模型 计算机科学 地质学 气候学 岩土工程 生态学 生物 操作系统
作者
Heng Li,Chunxiao Zhang,W. P. Chu,Dingtao Shen,Rongrong Li
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:637: 131434-131434 被引量:2
标识
DOI:10.1016/j.jhydrol.2024.131434
摘要

Although deep learning (DL) models, especially long-short-term memory (LSTM), demonstrate greater accuracy than process-based models in rainfall-runoff simulation, the predictions from process-based models are more physical than DL models. The main reason is that DL models have almost no process understanding capabilities like process-based models beyond their fitting capability. In this study, we developed a process-driven DL model under a unified DL architecture to improve the process awareness of DL models. To implement the model, a conceptual hydrological model (EXP-HYDRO) is implanted into a recurrent neural network (RNN) cell as a process driver for providing multi-sub-process variables related to the runoff process, and an Entity-Aware LSTM (EA-LSTM) cell is incorporated as a post-processor layer, resulting in the Process-driven RNN-EA-LSTM (PRNN-EA-LSTM). Under the assistance of the process driver, the model performance of PRNN-EA-LSTM on the 531 catchments from the Catchment Attributes and Meteorology for Large-sample Studies dataset is more robust than the pure DL model, and better than using only EXP-HYDRO as the input of EA-LSTM (i.e., EXP-HYDRO-EA-LSTM). Specifically, the median Nash-Sutcliffe efficiency (NSE) of PRNN-EA-LSTM in local and regional simulation is 0.03 and 0.02 higher than LSTM and 0.01 higher than EXP-HYDRO-EA-LSTM. Additionally, PRNN-EA-LSTM significantly enhances the low flow simulations and reduces the catchments number with negative NSE. This study demonstrates that process-based models can help DL models better represent the rainfall-runoff relationship under a unified architecture. Consequently, integrating the adaptability of process-based models into the DL architecture is anticipated to bolster the process understanding capabilities of DL models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
策略完成签到 ,获得积分10
刚刚
科研通AI2S应助yi采纳,获得10
刚刚
刚刚
端庄亦巧发布了新的文献求助10
刚刚
刚刚
李健应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
科目三应助悦耳冷松采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
happyAlice应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
1秒前
久桃发布了新的文献求助10
2秒前
2秒前
3秒前
李秋秋发布了新的文献求助30
3秒前
3秒前
yc发布了新的文献求助10
4秒前
bc应助用户123采纳,获得30
4秒前
心肝宝贝甜蜜饯完成签到,获得积分10
4秒前
4秒前
粥粥完成签到,获得积分10
5秒前
辛勤雨泽完成签到,获得积分10
5秒前
派大星完成签到,获得积分10
6秒前
动漫大师发布了新的文献求助10
6秒前
6秒前
ahspark完成签到,获得积分10
6秒前
xxxxxxxx完成签到 ,获得积分10
6秒前
windcreator完成签到,获得积分10
7秒前
小蘑菇应助晨雾锁阳采纳,获得10
7秒前
sdl发布了新的文献求助10
7秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796285
求助须知:如何正确求助?哪些是违规求助? 3341253
关于积分的说明 10305258
捐赠科研通 3057801
什么是DOI,文献DOI怎么找? 1677917
邀请新用户注册赠送积分活动 805718
科研通“疑难数据库(出版商)”最低求助积分说明 762740