Development of a Prognostic Risk Model Based on Oxidative StressRelated Genes for Platinum-Resistant Ovarian Cancer Patients

内科学 肿瘤科 医学 比例危险模型 卵巢癌 氧化应激 恶性肿瘤 癌症
作者
Huishan Su,Yaxin Hou,Difan Zhu,Rongqing Pang,Shiyun Tian,Ran Ding,Ying Chen,Sihe Zhang
出处
期刊:Recent Patents on Anti-cancer Drug Discovery [Bentham Science Publishers]
卷期号:19 被引量:2
标识
DOI:10.2174/0115748928311077240424065832
摘要

Introduction: Ovarian Cancer (OC) is a heterogeneous malignancy with poor outcomes. Oxidative stress plays a crucial role in developing drug resistance. However, the relationships between Oxidative Stress-related Genes (OSRGs) and the prognosis of platinum-resistant OC remain unclear. This study aimed to develop an OSRGs-based prognostic risk model for platinum-resistant OC patients. Methods: Gene Set Enrichment Analysis (GSEA) was performed to determine the expression difference of OSRGs between platinum-resistant and -sensitive OC patients. Cox regression analyses were used to identify the prognostic OSRGs and establish a risk score model. The model was validated by using an external dataset. Machine learning was used to determine the prognostic OSRGs associated with platinum resistance. Finally, the biological functions of selected OSRG were determined via in vitro cellular experiments. Results: Three gene sets associated with oxidative stress-related pathways were enriched (p < 0.05), and 105 OSRGs were found to be differentially expressed between platinum-resistant and - sensitive OC (p < 0.05). Twenty prognosis-associated OSRGs were identified (HR: 0:562-5.437; 95% CI: 0.319-20.148; p < 0.005), and seven independent OSRGs were used to construct a prognostic risk score model, which accurately predicted the survival of OC patients (1-, 3-, and 5-year AUC=0.69, 0.75, and 0.67, respectively). The prognostic potential of this model was confirmed in the validation cohort. Machine learning showed five prognostic OSRGs (SPHK1, PXDNL, C1QA, WRN, and SETX) to be strongly correlated with platinum resistance in OC patients. Cellular experiments showed that WRN significantly promoted the malignancy and platinum resistance of OC cells. Conclusion: The OSRGs-based risk score model can efficiently predict the prognosis and platinum resistance of OC patients. This model may improve the risk stratification of OC patients in the clinic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
辛勤月饼应助读书的时候采纳,获得10
1秒前
现实的中蓝完成签到,获得积分10
1秒前
2秒前
科研通AI6应助文静的含之采纳,获得10
2秒前
3秒前
库小学生发布了新的文献求助10
3秒前
3秒前
ALmighty完成签到 ,获得积分10
3秒前
Neonoes完成签到,获得积分10
4秒前
DianaRang发布了新的文献求助10
5秒前
王静雨应助欣欣子采纳,获得10
5秒前
5秒前
Lance蓝谶完成签到,获得积分10
6秒前
水水水发布了新的文献求助10
7秒前
壮观的冰双完成签到,获得积分10
7秒前
Lin发布了新的文献求助10
8秒前
潇洒一曲完成签到,获得积分10
9秒前
大模型应助饱满的问丝采纳,获得10
9秒前
庆次发布了新的文献求助10
9秒前
双木布里发布了新的文献求助10
11秒前
大力盼曼完成签到,获得积分10
11秒前
12秒前
蓓蓓完成签到 ,获得积分10
13秒前
xin发布了新的文献求助10
13秒前
肥仔发布了新的文献求助20
13秒前
哈尼完成签到,获得积分10
13秒前
14秒前
16秒前
liuyan发布了新的文献求助10
18秒前
Wind应助加菲丰丰采纳,获得10
19秒前
19秒前
19秒前
20秒前
21秒前
科研通AI6应助读书的时候采纳,获得10
22秒前
彭于晏应助晶晶采纳,获得10
22秒前
饱满的亦旋完成签到,获得积分10
24秒前
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5039615
求助须知:如何正确求助?哪些是违规求助? 4271408
关于积分的说明 13317028
捐赠科研通 4083194
什么是DOI,文献DOI怎么找? 2233950
邀请新用户注册赠送积分活动 1241627
关于科研通互助平台的介绍 1168087