A transformer model for de novo sequencing of data-independent acquisition mass spectrometry data

质谱法 计算机科学 色谱法 化学
作者
Justin J. Sanders,Bo Wen,Paul A. Rudnick,Rich Johnson,Christine C. Wu,Sewoong Oh,Michael J. MacCoss,William Stafford Noble
标识
DOI:10.1101/2024.06.03.597251
摘要

Abstract A core computational challenge in the analysis of mass spectrometry data is the de novo sequencing problem, in which the generating amino acid sequence is inferred directly from an observed fragmentation spectrum without the use of a sequence database. Recently, deep learning models have made significant advances in de novo sequencing by learning from massive datasets of high-confidence labeled mass spectra. However, these methods are primarily designed for data-dependent acquisition (DDA) experiments. Over the past decade, the field of mass spectrometry has been moving toward using data-independent acquisition (DIA) protocols for the analysis of complex proteomic samples due to their superior specificity and reproducibility. Hence, we present a new de novo sequencing model called Cascadia, which uses a transformer architecture to handle the more complex data generated by DIA protocols. In comparisons with existing approaches for de novo sequencing of DIA data, Cascadia achieves state-of-the-art performance across a range of instruments and experimental protocols. Additionally, we demonstrate Cascadia’s ability to accurately discover de novo coding variants and peptides from the variable region of antibodies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
傅全有完成签到,获得积分10
1秒前
bkagyin应助liwanhong采纳,获得10
1秒前
RussellZ发布了新的文献求助10
1秒前
可期发布了新的文献求助10
2秒前
3秒前
yuan完成签到,获得积分10
3秒前
cureall应助yihuifa采纳,获得10
3秒前
4秒前
阔达翠彤完成签到,获得积分10
4秒前
4秒前
爱喝酒的酒葫芦完成签到,获得积分10
4秒前
shmily完成签到,获得积分10
6秒前
6秒前
重要的奇异果完成签到,获得积分10
7秒前
8秒前
酷波er应助Echo采纳,获得10
8秒前
兜大王发布了新的文献求助10
9秒前
adi完成签到,获得积分10
9秒前
大厨懒洋洋完成签到,获得积分10
9秒前
10秒前
青天白日发布了新的文献求助20
11秒前
12秒前
聆琳完成签到 ,获得积分10
13秒前
大个应助可期采纳,获得10
13秒前
量子星尘发布了新的文献求助10
15秒前
秦摆烂发布了新的文献求助10
16秒前
16秒前
17秒前
zhangxinan完成签到,获得积分10
18秒前
fengdengjin发布了新的文献求助10
18秒前
噬菌体内溶素完成签到,获得积分10
19秒前
地瓜小菜发布了新的文献求助10
20秒前
慕青应助娃娃菜采纳,获得10
20秒前
20秒前
豆乳完成签到,获得积分10
23秒前
Kumquat完成签到,获得积分10
25秒前
公孙世往发布了新的文献求助10
25秒前
26秒前
panpan完成签到 ,获得积分10
26秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961001
求助须知:如何正确求助?哪些是违规求助? 3507225
关于积分的说明 11134609
捐赠科研通 3239650
什么是DOI,文献DOI怎么找? 1790276
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150