PresRecST: a novel herbal prescription recommendation algorithm for real-world patients with integration of syndrome differentiation and treatment planning

计算机科学 药方 工作流程 图形 中医药 人工智能 嵌入 机器学习 医学 数据挖掘 替代医学 理论计算机科学 数据库 药理学 病理
作者
Dong Xin,Chenxi Zhao,Xinpeng Song,Lei Zhang,Yu Liu,Jun Wu,Yiran Xu,Ning Xu,Jialing Liu,Haibin Yu,Kuo Yang,Xuezhong Zhou
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:31 (6): 1268-1279 被引量:10
标识
DOI:10.1093/jamia/ocae066
摘要

Abstract Objectives Herbal prescription recommendation (HPR) is a hot topic and challenging issue in field of clinical decision support of traditional Chinese medicine (TCM). However, almost all previous HPR methods have not adhered to the clinical principles of syndrome differentiation and treatment planning of TCM, which has resulted in suboptimal performance and difficulties in application to real-world clinical scenarios. Materials and Methods We emphasize the synergy among diagnosis and treatment procedure in real-world TCM clinical settings to propose the PresRecST model, which effectively combines the key components of symptom collection, syndrome differentiation, treatment method determination, and herb recommendation. This model integrates a self-curated TCM knowledge graph to learn the high-quality representations of TCM biomedical entities and performs 3 stages of clinical predictions to meet the principle of systematic sequential procedure of TCM decision making. Results To address the limitations of previous datasets, we constructed the TCM-Lung dataset, which is suitable for the simultaneous training of the syndrome differentiation, treatment method determination, and herb recommendation. Overall experimental results on 2 datasets demonstrate that the proposed PresRecST outperforms the state-of-the-art algorithm by significant improvements (eg, improvements of P@5 by 4.70%, P@10 by 5.37%, P@20 by 3.08% compared with the best baseline). Discussion The workflow of PresRecST effectively integrates the embedding vectors of the knowledge graph for progressive recommendation tasks, and it closely aligns with the actual diagnostic and treatment procedures followed by TCM doctors. A series of ablation experiments and case study show the availability and interpretability of PresRecST, indicating the proposed PresRecST can be beneficial for assisting the diagnosis and treatment in real-world TCM clinical settings. Conclusion Our technology can be applied in a progressive recommendation scenario, providing recommendations for related items in a progressive manner, which can assist in providing more reliable diagnoses and herbal therapies for TCM clinical task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彩色德天发布了新的文献求助30
刚刚
bridge完成签到,获得积分10
2秒前
嘿嘿嘿发布了新的文献求助10
2秒前
简单成危应助ShenghuiH采纳,获得10
4秒前
4秒前
希望天下0贩的0应助KaK采纳,获得10
6秒前
wm完成签到,获得积分20
7秒前
ash发布了新的文献求助10
7秒前
7秒前
烟花应助科研通管家采纳,获得10
8秒前
Orange应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得20
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
eric888应助科研通管家采纳,获得100
8秒前
eric888应助科研通管家采纳,获得100
8秒前
8秒前
柔弱曼安发布了新的文献求助10
8秒前
Ava应助Magical采纳,获得30
8秒前
10秒前
TiY发布了新的文献求助10
10秒前
bridge发布了新的文献求助10
13秒前
wm发布了新的文献求助10
14秒前
大模型应助嘿嘿嘿采纳,获得10
16秒前
王as应助lucky采纳,获得10
17秒前
18秒前
跳跃聪健完成签到,获得积分10
19秒前
猪猪hero发布了新的文献求助10
19秒前
19秒前
快乐翎发布了新的文献求助10
22秒前
22秒前
小丸子发布了新的文献求助10
23秒前
24秒前
在水一方应助吴学仕采纳,获得10
26秒前
28秒前
29秒前
29秒前
称心鸵鸟完成签到,获得积分10
31秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Evaluating and predicting disease damage accumulation of IgG4-RD over ten years: utility of the IgG4-related Disease Damage Index 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4123372
求助须知:如何正确求助?哪些是违规求助? 3661291
关于积分的说明 11588679
捐赠科研通 3362085
什么是DOI,文献DOI怎么找? 1847430
邀请新用户注册赠送积分活动 911881
科研通“疑难数据库(出版商)”最低求助积分说明 827656