PresRecST: a novel herbal prescription recommendation algorithm for real-world patients with integration of syndrome differentiation and treatment planning

计算机科学 药方 工作流程 图形 中医药 人工智能 嵌入 机器学习 医学 数据挖掘 替代医学 理论计算机科学 数据库 药理学 病理
作者
Dong Xin,Chenxi Zhao,Xinpeng Song,Lei Zhang,Yu Liu,Jun Wu,Yiran Xu,Ning Xu,Jialing Liu,Haibin Yu,Kuo Yang,Xuezhong Zhou
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:31 (6): 1268-1279 被引量:12
标识
DOI:10.1093/jamia/ocae066
摘要

Abstract Objectives Herbal prescription recommendation (HPR) is a hot topic and challenging issue in field of clinical decision support of traditional Chinese medicine (TCM). However, almost all previous HPR methods have not adhered to the clinical principles of syndrome differentiation and treatment planning of TCM, which has resulted in suboptimal performance and difficulties in application to real-world clinical scenarios. Materials and Methods We emphasize the synergy among diagnosis and treatment procedure in real-world TCM clinical settings to propose the PresRecST model, which effectively combines the key components of symptom collection, syndrome differentiation, treatment method determination, and herb recommendation. This model integrates a self-curated TCM knowledge graph to learn the high-quality representations of TCM biomedical entities and performs 3 stages of clinical predictions to meet the principle of systematic sequential procedure of TCM decision making. Results To address the limitations of previous datasets, we constructed the TCM-Lung dataset, which is suitable for the simultaneous training of the syndrome differentiation, treatment method determination, and herb recommendation. Overall experimental results on 2 datasets demonstrate that the proposed PresRecST outperforms the state-of-the-art algorithm by significant improvements (eg, improvements of P@5 by 4.70%, P@10 by 5.37%, P@20 by 3.08% compared with the best baseline). Discussion The workflow of PresRecST effectively integrates the embedding vectors of the knowledge graph for progressive recommendation tasks, and it closely aligns with the actual diagnostic and treatment procedures followed by TCM doctors. A series of ablation experiments and case study show the availability and interpretability of PresRecST, indicating the proposed PresRecST can be beneficial for assisting the diagnosis and treatment in real-world TCM clinical settings. Conclusion Our technology can be applied in a progressive recommendation scenario, providing recommendations for related items in a progressive manner, which can assist in providing more reliable diagnoses and herbal therapies for TCM clinical task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飘逸太清发布了新的文献求助10
1秒前
lakeisha完成签到,获得积分20
1秒前
Taro完成签到 ,获得积分10
1秒前
2秒前
2秒前
呓语发布了新的文献求助10
3秒前
xmhxpz发布了新的文献求助10
4秒前
钇点点发布了新的文献求助10
5秒前
周一发布了新的文献求助10
5秒前
星际牛仔完成签到,获得积分10
6秒前
鱼鱼鱼KYSL完成签到 ,获得积分10
7秒前
CodeCraft应助xiu-er采纳,获得10
8秒前
8秒前
8秒前
kingdirt完成签到,获得积分10
9秒前
auggy完成签到 ,获得积分10
9秒前
10秒前
机长完成签到 ,获得积分10
11秒前
wangxy完成签到,获得积分10
12秒前
雪山飞龙发布了新的文献求助10
12秒前
jjw123完成签到,获得积分10
13秒前
Akim应助GSY采纳,获得10
13秒前
小杨发布了新的文献求助10
13秒前
13秒前
123发布了新的文献求助10
13秒前
抹茶味的奶酥完成签到,获得积分10
14秒前
慕青应助香蕉爱科研采纳,获得10
14秒前
14秒前
15秒前
大模型应助Koi采纳,获得10
15秒前
研友_VZG7GZ应助逆天小子采纳,获得10
16秒前
陌姌完成签到,获得积分10
16秒前
16秒前
dxh发布了新的文献求助10
17秒前
libaiyao完成签到,获得积分10
17秒前
星辰大海应助王洪采纳,获得10
18秒前
外向的万宝路关注了科研通微信公众号
18秒前
18秒前
zzy完成签到,获得积分10
18秒前
t6发布了新的文献求助10
19秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5343389
求助须知:如何正确求助?哪些是违规求助? 4479059
关于积分的说明 13941390
捐赠科研通 4376069
什么是DOI,文献DOI怎么找? 2404428
邀请新用户注册赠送积分活动 1396950
关于科研通互助平台的介绍 1369288