PresRecST: a novel herbal prescription recommendation algorithm for real-world patients with integration of syndrome differentiation and treatment planning

计算机科学 药方 工作流程 图形 中医药 人工智能 嵌入 机器学习 医学 数据挖掘 替代医学 理论计算机科学 数据库 药理学 病理
作者
Dong Xin,Chenxi Zhao,Xinpeng Song,Lei Zhang,Yu Liu,Jun Wu,Yiran Xu,Ning Xu,Jialing Liu,Haibin Yu,Kuo Yang,Xuezhong Zhou
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:31 (6): 1268-1279 被引量:11
标识
DOI:10.1093/jamia/ocae066
摘要

Abstract Objectives Herbal prescription recommendation (HPR) is a hot topic and challenging issue in field of clinical decision support of traditional Chinese medicine (TCM). However, almost all previous HPR methods have not adhered to the clinical principles of syndrome differentiation and treatment planning of TCM, which has resulted in suboptimal performance and difficulties in application to real-world clinical scenarios. Materials and Methods We emphasize the synergy among diagnosis and treatment procedure in real-world TCM clinical settings to propose the PresRecST model, which effectively combines the key components of symptom collection, syndrome differentiation, treatment method determination, and herb recommendation. This model integrates a self-curated TCM knowledge graph to learn the high-quality representations of TCM biomedical entities and performs 3 stages of clinical predictions to meet the principle of systematic sequential procedure of TCM decision making. Results To address the limitations of previous datasets, we constructed the TCM-Lung dataset, which is suitable for the simultaneous training of the syndrome differentiation, treatment method determination, and herb recommendation. Overall experimental results on 2 datasets demonstrate that the proposed PresRecST outperforms the state-of-the-art algorithm by significant improvements (eg, improvements of P@5 by 4.70%, P@10 by 5.37%, P@20 by 3.08% compared with the best baseline). Discussion The workflow of PresRecST effectively integrates the embedding vectors of the knowledge graph for progressive recommendation tasks, and it closely aligns with the actual diagnostic and treatment procedures followed by TCM doctors. A series of ablation experiments and case study show the availability and interpretability of PresRecST, indicating the proposed PresRecST can be beneficial for assisting the diagnosis and treatment in real-world TCM clinical settings. Conclusion Our technology can be applied in a progressive recommendation scenario, providing recommendations for related items in a progressive manner, which can assist in providing more reliable diagnoses and herbal therapies for TCM clinical task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奥利给完成签到 ,获得积分10
1秒前
1秒前
2秒前
2秒前
华仔应助xx采纳,获得10
3秒前
下雨发布了新的文献求助10
4秒前
平常心完成签到,获得积分10
6秒前
幽默的溪灵给大力三问的求助进行了留言
6秒前
Asuka发布了新的文献求助10
8秒前
Mercury发布了新的文献求助200
9秒前
11秒前
11秒前
wsazah完成签到,获得积分10
11秒前
12秒前
诚心绿兰完成签到 ,获得积分10
12秒前
12秒前
大模型应助meimei采纳,获得10
16秒前
科目三应助小格子采纳,获得10
17秒前
欢喜盼秋关注了科研通微信公众号
18秒前
伊思发布了新的文献求助10
18秒前
之星君完成签到,获得积分10
19秒前
wu发布了新的文献求助10
19秒前
思源应助xx采纳,获得10
19秒前
馆长应助小凯采纳,获得50
20秒前
21秒前
sun发布了新的文献求助10
23秒前
搞学术的成功女人完成签到,获得积分10
23秒前
zjh完成签到,获得积分10
23秒前
英俊的铭应助唠叨的亿先采纳,获得10
23秒前
桐桐应助wei采纳,获得10
24秒前
FFFFFFG发布了新的文献求助10
24秒前
25秒前
as1710549269完成签到,获得积分10
25秒前
25秒前
木子秀完成签到,获得积分10
26秒前
陈子昂发布了新的文献求助10
28秒前
共享精神应助Theprisoners采纳,获得10
28秒前
苗条白枫完成签到 ,获得积分10
28秒前
30秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4636808
求助须知:如何正确求助?哪些是违规求助? 4030985
关于积分的说明 12472092
捐赠科研通 3717781
什么是DOI,文献DOI怎么找? 2051995
邀请新用户注册赠送积分活动 1083091
科研通“疑难数据库(出版商)”最低求助积分说明 965156