已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Elastic, Conductive, and Mechanically Strong Hydrogels from Dual-Cross-Linked Aramid Nanofiber Composites

材料科学 自愈水凝胶 纳米纤维 芳纶 复合材料 极限抗拉强度 导电体 乙烯醇 复合数 多孔性 纳米技术 纤维 聚合物 高分子化学
作者
Huimin He,Yanran Li,Hongzhen Liu,Yoonseob Kim,Aixin Yan,Lizhi Xu
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (6): 7539-7545 被引量:38
标识
DOI:10.1021/acsami.0c21148
摘要

Recent research on conductive hydrogels has revealed their potential for building advanced soft bioelectronic devices. Their mechanical flexibility, water content, and porosity approach those of biological tissues, providing a compliant interface between the human body and electronic hardware. Conductive hydrogels could be utilized in many soft tools such as neural electrodes, tactile interfaces, soft actuators, and other electroactive devices. However, most of the available conductive hydrogels exhibit weak mechanical properties, which hinders their application in durable biointegrated systems. Here, we report aramid nanofiber-based hydrogels providing a combination of high elasticity, strength, and electrical conductivity. Highly branched aramid nanofibers (ANFs) provide a robust three-dimensional (3D) framework resembling those in load-bearing soft tissues. When interlaced with poly(vinyl alcohol) (PVA) and cross-linked with both noncovalent and covalent interactions, the nanofiber composites exhibit a high water content of ∼76.4 wt %, strength of ∼7.5 MPa, ductility of ∼407%, and shape recovery of ∼99.5% under cyclic tensile stress of 0.3 MPa. Mobile ions impart a conductivity of ∼2 S/m to the hydrogels, enabling large-strain sensors with stable operation. In addition, the embedded silver nanoparticles afford broad-spectrum antimicrobial activities, which is favorable for medical devices. The versatility of aramid nanofiber-based composites suggests their further possibilities for functionalization and scalable fabrication toward sophisticated bioelectronic systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
月湖发布了新的文献求助10
3秒前
5秒前
yang发布了新的文献求助10
6秒前
li发布了新的文献求助10
6秒前
lijia3发布了新的文献求助10
7秒前
7秒前
zxb发布了新的文献求助10
7秒前
郑同学发布了新的文献求助10
9秒前
gkhsdvkb完成签到 ,获得积分10
9秒前
卓卓完成签到,获得积分10
9秒前
xhm998发布了新的文献求助10
11秒前
蔡毛线完成签到 ,获得积分10
12秒前
13秒前
小钱完成签到,获得积分10
14秒前
Lucas选李华完成签到 ,获得积分10
20秒前
20秒前
任性的诗兰完成签到 ,获得积分10
21秒前
山屿完成签到,获得积分20
22秒前
lzs完成签到,获得积分10
22秒前
wanci应助xuan采纳,获得10
23秒前
26秒前
动漫大师发布了新的文献求助10
26秒前
Vera123发布了新的文献求助10
29秒前
31秒前
31秒前
所所应助xhm998采纳,获得10
33秒前
深情安青应助Tracey16采纳,获得10
33秒前
Hello应助郑同学采纳,获得10
33秒前
35秒前
灵巧的晓山完成签到,获得积分20
35秒前
xuan发布了新的文献求助10
37秒前
duoduoqian发布了新的文献求助10
38秒前
今天喝咖啡吗完成签到,获得积分10
39秒前
华仔应助zxb采纳,获得30
41秒前
从容芮应助小溪里的鱼儿采纳,获得200
41秒前
lc完成签到,获得积分10
41秒前
44秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827082
求助须知:如何正确求助?哪些是违规求助? 3369330
关于积分的说明 10455680
捐赠科研通 3088971
什么是DOI,文献DOI怎么找? 1699560
邀请新用户注册赠送积分活动 817399
科研通“疑难数据库(出版商)”最低求助积分说明 770217