Causal inference and counterfactual prediction in machine learning for actionable healthcare

反事实思维 因果推理 计算机科学 反事实条件 观察研究 人工智能 心理干预 机器学习 因果模型 风险分析(工程) 医学 数据科学 心理学 社会心理学 病理 精神科
作者
Mattia Prosperi,Yi Guo,Matthew Sperrin,James S. Koopman,Jae Min,Xing He,Shannan N. Rich,Mo Wang,Iain Buchan,Jiang Bian
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:2 (7): 369-375 被引量:363
标识
DOI:10.1038/s42256-020-0197-y
摘要

Big data, high-performance computing, and (deep) machine learning are increasingly becoming key to precision medicine—from identifying disease risks and taking preventive measures, to making diagnoses and personalizing treatment for individuals. Precision medicine, however, is not only about predicting risks and outcomes, but also about weighing interventions. Interventional clinical predictive models require the correct specification of cause and effect, and the calculation of so-called counterfactuals, that is, alternative scenarios. In biomedical research, observational studies are commonly affected by confounding and selection bias. Without robust assumptions, often requiring a priori domain knowledge, causal inference is not feasible. Data-driven prediction models are often mistakenly used to draw causal effects, but neither their parameters nor their predictions necessarily have a causal interpretation. Therefore, the premise that data-driven prediction models lead to trustable decisions/interventions for precision medicine is questionable. When pursuing intervention modelling, the bio-health informatics community needs to employ causal approaches and learn causal structures. Here we discuss how target trials (algorithmic emulation of randomized studies), transportability (the licence to transfer causal effects from one population to another) and prediction invariance (where a true causal model is contained in the set of all prediction models whose accuracy does not vary across different settings) are linchpins to developing and testing intervention models. Machine learning models are commonly used to predict risks and outcomes in biomedical research. But healthcare often requires information about cause–effect relations and alternative scenarios, that is, counterfactuals. Prosperi et al. discuss the importance of interventional and counterfactual models, as opposed to purely predictive models, in the context of precision medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wjt发布了新的文献求助10
2秒前
宁祚完成签到,获得积分10
2秒前
科研通AI6应助云深不知处采纳,获得10
3秒前
英姑应助Arslan采纳,获得10
3秒前
英姑应助七分糖采纳,获得10
5秒前
科研通AI6应助如意枫叶采纳,获得10
5秒前
HaonanZhang发布了新的文献求助10
7秒前
yxi完成签到 ,获得积分10
8秒前
Verity应助畜牧笑笑采纳,获得20
8秒前
9秒前
bkagyin应助舒服的鸽子采纳,获得10
10秒前
科研通AI6应助优雅醉山采纳,获得10
10秒前
哈哈哈完成签到,获得积分10
11秒前
11秒前
wjt完成签到 ,获得积分10
14秒前
15秒前
qqqq发布了新的文献求助10
15秒前
遮宁发布了新的文献求助10
16秒前
舒服的鸽子完成签到,获得积分10
17秒前
will214完成签到 ,获得积分10
19秒前
orixero应助优雅的无极采纳,获得10
20秒前
24秒前
科研通AI6应助遮宁采纳,获得10
27秒前
27秒前
开天神秀完成签到,获得积分10
27秒前
云深不知处完成签到,获得积分10
28秒前
弱水完成签到 ,获得积分10
28秒前
情怀应助小鱼采纳,获得10
29秒前
30秒前
31秒前
小二郎应助GXC0304采纳,获得10
36秒前
七分糖发布了新的文献求助10
36秒前
友好聋五完成签到,获得积分10
38秒前
曲初雪完成签到,获得积分10
39秒前
cjh发布了新的文献求助10
40秒前
42秒前
上官若男应助qi采纳,获得10
43秒前
BowieHuang应助科研通管家采纳,获得10
45秒前
浮游应助科研通管家采纳,获得10
45秒前
慕青应助科研通管家采纳,获得10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563756
求助须知:如何正确求助?哪些是违规求助? 4648711
关于积分的说明 14686071
捐赠科研通 4590625
什么是DOI,文献DOI怎么找? 2518701
邀请新用户注册赠送积分活动 1491322
关于科研通互助平台的介绍 1462534