已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Causal inference and counterfactual prediction in machine learning for actionable healthcare

反事实思维 因果推理 计算机科学 反事实条件 观察研究 人工智能 心理干预 机器学习 因果模型 风险分析(工程) 医学 数据科学 心理学 社会心理学 病理 精神科
作者
Mattia Prosperi,Yi Guo,Matthew Sperrin,James S. Koopman,Jae Min,Xing He,Shannan N. Rich,Mo Wang,Iain Buchan,Jiang Bian
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:2 (7): 369-375 被引量:268
标识
DOI:10.1038/s42256-020-0197-y
摘要

Big data, high-performance computing, and (deep) machine learning are increasingly becoming key to precision medicine—from identifying disease risks and taking preventive measures, to making diagnoses and personalizing treatment for individuals. Precision medicine, however, is not only about predicting risks and outcomes, but also about weighing interventions. Interventional clinical predictive models require the correct specification of cause and effect, and the calculation of so-called counterfactuals, that is, alternative scenarios. In biomedical research, observational studies are commonly affected by confounding and selection bias. Without robust assumptions, often requiring a priori domain knowledge, causal inference is not feasible. Data-driven prediction models are often mistakenly used to draw causal effects, but neither their parameters nor their predictions necessarily have a causal interpretation. Therefore, the premise that data-driven prediction models lead to trustable decisions/interventions for precision medicine is questionable. When pursuing intervention modelling, the bio-health informatics community needs to employ causal approaches and learn causal structures. Here we discuss how target trials (algorithmic emulation of randomized studies), transportability (the licence to transfer causal effects from one population to another) and prediction invariance (where a true causal model is contained in the set of all prediction models whose accuracy does not vary across different settings) are linchpins to developing and testing intervention models. Machine learning models are commonly used to predict risks and outcomes in biomedical research. But healthcare often requires information about cause–effect relations and alternative scenarios, that is, counterfactuals. Prosperi et al. discuss the importance of interventional and counterfactual models, as opposed to purely predictive models, in the context of precision medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魅力小白菜完成签到,获得积分10
1秒前
yoyo应助Wellbeing采纳,获得10
3秒前
蒲公英发布了新的文献求助10
3秒前
赵子轩发布了新的文献求助10
5秒前
5秒前
悦耳白山发布了新的文献求助10
6秒前
黑米粥发布了新的文献求助50
8秒前
9秒前
HuSP完成签到,获得积分10
9秒前
10秒前
10秒前
456发布了新的文献求助10
10秒前
che发布了新的文献求助10
13秒前
14秒前
14秒前
科研通AI5应助酷炫的面包采纳,获得10
14秒前
华仔应助赵子轩采纳,获得10
15秒前
15秒前
16秒前
YElv完成签到,获得积分10
16秒前
rayy发布了新的文献求助10
17秒前
18秒前
user_huang发布了新的文献求助10
20秒前
潜水之鱼完成签到,获得积分20
20秒前
糊糊发布了新的文献求助10
20秒前
玭咲发布了新的文献求助10
20秒前
负责母鸡发布了新的文献求助20
20秒前
21秒前
六沉发布了新的文献求助10
21秒前
SYLH应助Jack采纳,获得20
23秒前
mmm发布了新的文献求助10
24秒前
26秒前
俭朴的跳跳糖完成签到 ,获得积分10
26秒前
wanci应助树123采纳,获得10
27秒前
匆匆赶路人完成签到 ,获得积分10
28秒前
MechaniKer完成签到 ,获得积分10
28秒前
我是老大应助糊糊采纳,获得10
30秒前
31秒前
树123完成签到,获得积分20
32秒前
32秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815177
求助须知:如何正确求助?哪些是违规求助? 3359132
关于积分的说明 10400226
捐赠科研通 3076720
什么是DOI,文献DOI怎么找? 1689995
邀请新用户注册赠送积分活动 813514
科研通“疑难数据库(出版商)”最低求助积分说明 767673