Radiomic Nomogram for Pretreatment Prediction of Pathologic Complete Response to Neoadjuvant Therapy in Breast Cancer: Predictive Value of Staging Contrast-enhanced CT

列线图 医学 乳腺癌 逻辑回归 新辅助治疗 放射科 阶段(地层学) 内科学 子群分析 肿瘤科 曲线下面积 接收机工作特性 无线电技术 核医学 癌症 荟萃分析 古生物学 生物
作者
Xiaomei Huang,Jinhai Mai,Yanqi Huang,Lan He,Xin Chen,Xiaomei Wu,Yexing Li,Xiao‐Jun Yang,Mei Dong,Jia Huang,Fang Zhang,Changhong Liang,Zaiyi Liu
出处
期刊:Clinical Breast Cancer [Elsevier BV]
卷期号:21 (4): e388-e401 被引量:14
标识
DOI:10.1016/j.clbc.2020.12.004
摘要

The purpose of this study was to predict pathologic complete response (pCR) to neoadjuvant therapy in breast cancer using radiomics based on pretreatment staging contrast-enhanced computed tomography (CECT).A total of 215 patients were retrospectively analyzed. Based on the intratumoral and peritumoral regions of CECT images, radiomic features were extracted and selected, respectively, to develop an intratumoral signature and a peritumoral signature with logistic regression in a training dataset (138 patients from November 2015 to October 2017). We also developed a clinical model with the molecular characterization of the tumor. A radiomic nomogram was further constructed by incorporating the intratumoral and peritumoral signatures with molecular characterization. The performance of the nomogram was validated in terms of discrimination, calibration, and clinical utility in an independent validation dataset (77 patients from November 2017 to December 2018). Stratified analysis was performed to develop a subtype-specific radiomic signature for each subgroup.Compared with the clinical model (area under the curve [AUC], 0.756), the radiomic nomogram (AUC, 0.818) achieved better performance for pCR prediction in the validation dataset with continuous net reclassification improvement of 0.787 and good calibration. Decision curve analysis suggested the nomogram was clinically useful. Subtype-specific radiomic signatures showed improved AUCs (luminal subgroup, 0.936; human epidermal growth factor receptor 2-positive subgroup, 0.825; and triple negative subgroup, 0.858) for pCR prediction.This study has revealed a predictive value of pretreatment staging-CECT and successfully developed and validated a radiomic nomogram for individualized prediction of pCR to neoadjuvant therapy in breast cancer, which could assist clinical decision-making and improve patient outcome.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
健壮丝袜发布了新的文献求助10
1秒前
天天快乐应助青wu采纳,获得10
2秒前
2秒前
小吴同学来啦完成签到,获得积分10
3秒前
3秒前
nannannan发布了新的文献求助10
3秒前
小蘑菇完成签到,获得积分10
3秒前
liqian应助坚强焦采纳,获得10
4秒前
七星嘿咻完成签到,获得积分10
4秒前
天天玩发布了新的文献求助10
4秒前
6秒前
乐乐应助健壮丝袜采纳,获得10
6秒前
7秒前
1134发布了新的文献求助10
7秒前
177ycd完成签到,获得积分10
7秒前
Akim应助皮卡丘采纳,获得10
8秒前
彭于晏应助小葡萄采纳,获得10
8秒前
鹏gg发布了新的文献求助10
9秒前
Leo完成签到 ,获得积分10
10秒前
虎虎完成签到,获得积分10
11秒前
自然白安完成签到 ,获得积分10
11秒前
明快发布了新的文献求助10
12秒前
12秒前
14秒前
淙淙柔水完成签到,获得积分0
15秒前
墨菲特发布了新的文献求助10
15秒前
16秒前
luca发布了新的文献求助50
16秒前
青wu完成签到,获得积分10
17秒前
李爱国应助xdlongchem采纳,获得10
18秒前
科研通AI5应助heli采纳,获得10
19秒前
小小枫叶轻轻而过完成签到,获得积分10
19秒前
whisper发布了新的文献求助10
20秒前
简单平凡发布了新的文献求助10
21秒前
苹果冬莲完成签到,获得积分10
22秒前
科研通AI5应助过儿采纳,获得10
22秒前
23秒前
别烦完成签到 ,获得积分10
23秒前
24秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Resonance: A Sociology of Our Relationship to the World 200
Worked Bone, Antler, Ivory, and Keratinous Materials 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828256
求助须知:如何正确求助?哪些是违规求助? 3370549
关于积分的说明 10464049
捐赠科研通 3090487
什么是DOI,文献DOI怎么找? 1700455
邀请新用户注册赠送积分活动 817837
科研通“疑难数据库(出版商)”最低求助积分说明 770493