Enabling materials informatics for 29Si solid-state NMR of crystalline materials

种姓 核磁共振谱数据库 核磁共振波谱 固态核磁共振 核磁共振晶体学 张量(固有定义) 材料科学 计算机科学 谱线 化学 核磁共振 氟-19核磁共振 计算化学 物理 电子结构 数学 天文 纯数学
作者
He Sun,Shyam Dwaraknath,Handong Ling,Xiaohui Qu,Patrick Huck,Kristin A. Persson,Sophia E. Hayes
出处
期刊:npj computational materials [Nature Portfolio]
卷期号:6 (1) 被引量:17
标识
DOI:10.1038/s41524-020-0328-3
摘要

Abstract Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for obtaining precise information about the local bonding of materials, but difficult to interpret without a well-vetted dataset of reference spectra. The ability to predict NMR parameters and connect them to three-dimensional local environments is critical for understanding more complex, long-range interactions. New computational methods have revealed structural information available from 29 Si solid-state NMR by generating computed reference spectra for solids. Such predictions are useful for the identification of new silicon-containing compounds, and serve as a starting point for determination of the local environments present in amorphous structures. In this study, we have used 42 silicon sites as a benchmarking set to compare experimentally reported 29 Si solid-state NMR spectra with those computed by CASTEP-NMR and Vienna Ab Initio Simulation Program (VASP). Data-driven approaches enable us to identify the source of discrepancies across a range of experimental and computational results. The information from NMR (in the form of an NMR tensor) has been validated, and in some cases corrected, in an effort to catalog these for the local spectroscopy database infrastructure (LSDI), where over 10,000 29 Si NMR tensors for crystalline materials have been computed. Knowledge of specific tensor values can serve as the basis for executing NMR experiments with precision, optimizing conditions to capture the elements accurately. The ability to predict and compare experimental observables from a wide range of structures can aid researchers in their chemical assignments and structure determination, since the computed values enables the extension beyond tables of typical chemical shift (or shielding) ranges.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lichunlei完成签到,获得积分10
2秒前
tylerconan完成签到 ,获得积分10
3秒前
zhonghbush发布了新的文献求助10
3秒前
3秒前
李爱国应助guoguo采纳,获得10
3秒前
4秒前
zcious发布了新的文献求助10
4秒前
4秒前
CodeCraft应助水门采纳,获得30
4秒前
小二郎应助jiayou采纳,获得10
6秒前
Bonnienuit发布了新的文献求助10
7秒前
盯盯盯发布了新的文献求助10
9秒前
蓝桉发布了新的文献求助30
9秒前
香蕉觅云应助泡沫没有冰采纳,获得10
10秒前
10秒前
hzh完成签到 ,获得积分10
11秒前
鳗鱼焦完成签到 ,获得积分10
11秒前
Ava应助cc采纳,获得10
11秒前
苏西坡发布了新的文献求助10
11秒前
桐桐应助科研通管家采纳,获得10
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
Akim应助科研通管家采纳,获得10
13秒前
隐形曼青应助科研通管家采纳,获得100
13秒前
cdercder应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得30
13秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
经竺完成签到,获得积分10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
隐形曼青应助科研通管家采纳,获得10
14秒前
sunyz应助科研通管家采纳,获得30
14秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
搜集达人应助科研通管家采纳,获得30
14秒前
cdercder应助科研通管家采纳,获得10
14秒前
田様应助科研通管家采纳,获得10
14秒前
丘比特应助科研通管家采纳,获得10
14秒前
SciGPT应助科研通管家采纳,获得10
14秒前
天天快乐应助科研通管家采纳,获得10
14秒前
wanci应助科研通管家采纳,获得10
15秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843574
求助须知:如何正确求助?哪些是违规求助? 3385883
关于积分的说明 10542869
捐赠科研通 3106677
什么是DOI,文献DOI怎么找? 1711032
邀请新用户注册赠送积分活动 823920
科研通“疑难数据库(出版商)”最低求助积分说明 774380