计算机科学
人工智能
分割
学习迁移
糖尿病性视网膜病变
分级(工程)
深度学习
可解释性
图像分割
可转让性
机器学习
模式识别(心理学)
医学
糖尿病
土木工程
罗伊特
内分泌学
工程类
作者
Yi Zhou,Boyang Wang,Lei Huang,Shanshan Cui,Ling Shao
标识
DOI:10.1109/tmi.2020.3037771
摘要
People with diabetes are at risk of developing an eye disease called diabetic retinopathy (DR). This disease occurs when high blood glucose levels cause damage to blood vessels in the retina. Computer-aided DR diagnosis is a promising tool for early detection of DR and severity grading, due to the great success of deep learning. However, most current DR diagnosis systems do not achieve satisfactory performance or interpretability for ophthalmologists, due to the lack of training data with consistent and fine-grained annotations. To address this problem, we construct a large fine-grained annotated DR dataset containing 2,842 images (FGADR). This dataset has 1,842 images with pixel-level DR-related lesion annotations, and 1,000 images with image-level labels graded by six board-certified ophthalmologists with intra-rater consistency. The proposed dataset will enable extensive studies on DR diagnosis. We set up three benchmark tasks for evaluation: 1. DR lesion segmentation; 2. DR grading by joint classification and segmentation; 3. Transfer learning for ocular multi-disease identification. Moreover, a novel inductive transfer learning method is introduced for the third task. Extensive experiments using different state-of-the-art methods are conducted on our FGADR dataset, which can serve as baselines for future research.
科研通智能强力驱动
Strongly Powered by AbleSci AI