MRI‐Based Radiomics Signature: A Potential Biomarker for Identifying Glypican 3‐Positive Hepatocellular Carcinoma

列线图 肝细胞癌 Glypican 3型 无线电技术 单变量 医学 逻辑回归 逐步回归 队列 肿瘤科 放射科 内科学 多元统计 机器学习 计算机科学
作者
Dongsheng Gu,Yongsheng Xie,Jingwei Wei,Wen‐Cui Li,Zhaoxiang Ye,Zhongyuan Zhu,Jie Tian,Xubin Li
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:52 (6): 1679-1687 被引量:52
标识
DOI:10.1002/jmri.27199
摘要

Background Glypican 3 (GPC3) expression has proved to be a critical risk factor related to prognosis in hepatocellular carcinoma (HCC) patients. Purpose To investigate the performance of MRI‐based radiomics signature in identifying GPC3‐positive HCC. Study Type Retrospective. Population An initial cohort of 293 patients with pathologically confirmed HCC was involved in this study, and patients were randomly divided into training (195) and validation (98) cohorts. Field Strength/Sequences Contrast‐enhanced T 1 ‐weight MRI was performed with a 1.5T scanner. Assessment A total of 853 radiomic features were extracted from the volume imaging. Univariate analysis and Fisher scoring were utilized for feature reduction. Subsequently, forward stepwise feature selection and radiomics signature building were performed based on a support vector machine (SVM). Incorporating independent risk factors, a combined nomogram was developed by multivariable logistic regression modeling. Statistical Tests The predictive performance of the nomogram was calculated using the area under the receive operating characteristic curve (AUC). Decision curve analysis (DCA) was applied to estimate the clinical usefulness. Results The radiomics signature consisting of 10 selected features achieved good prediction efficacy (training cohort: AUC = 0.879, validation cohort: AUC = 0.871). Additionally, the combined nomogram integrating independent clinical risk factor α‐fetoprotein (AFP) and radiomics signature showed improved calibration and prominent predictive performance with AUCs of 0.926 and 0.914 in the training and validation cohorts, respectively. Data Conclusion The proposed MR‐based radiomics signature is strongly related to GPC3‐positive. The combined nomogram incorporating AFP and radiomics signature may provide an effective tool for noninvasive and individualized prediction of GPC3‐positive in patients with HCC. J. MAGN. RESON. IMAGING 2020;52:1679–1687.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助诸葛朝雪采纳,获得10
刚刚
喜悦忆秋发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
科研通AI6应助book卟采纳,获得10
1秒前
1秒前
峰成发布了新的文献求助10
2秒前
豆豆浆发布了新的文献求助10
2秒前
珉志发布了新的文献求助10
2秒前
liceh发布了新的文献求助10
2秒前
靓靓靓发布了新的文献求助10
3秒前
liujie666完成签到,获得积分10
3秒前
4秒前
kat发布了新的文献求助10
4秒前
4秒前
5秒前
小黄完成签到 ,获得积分10
5秒前
5秒前
5秒前
orixero应助月下荷花采纳,获得10
6秒前
6秒前
7秒前
ZhouTY完成签到,获得积分10
7秒前
anle完成签到 ,获得积分10
7秒前
7秒前
考拉完成签到,获得积分10
9秒前
9秒前
lemon完成签到,获得积分10
9秒前
Tail发布了新的文献求助20
10秒前
10秒前
10秒前
Simba发布了新的文献求助10
11秒前
九月y9发布了新的文献求助10
11秒前
李小鑫吖完成签到,获得积分10
11秒前
11秒前
wang完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
喜悦完成签到,获得积分10
13秒前
xunxun发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5479869
求助须知:如何正确求助?哪些是违规求助? 4581230
关于积分的说明 14379322
捐赠科研通 4509748
什么是DOI,文献DOI怎么找? 2471544
邀请新用户注册赠送积分活动 1457972
关于科研通互助平台的介绍 1431730