Spectral Demodulation of Fiber Bragg Grating Sensor Based on Deep Convolutional Neural Networks

解调 光纤布拉格光栅 计算机科学 卷积神经网络 电子工程 人工神经网络 光纤 光学 人工智能 电信 物理 工程类 频道(广播)
作者
Zihan Cao,Shengqi Zhang,Titi Xia,Zhengyong Liu,Zhaohui Li
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:40 (13): 4429-4435 被引量:42
标识
DOI:10.1109/jlt.2022.3155253
摘要

This paper presents a new method of demodulating the spectrum of fiber Bragg grating (FBG) based sensors by employing deep convolutional neural networks (DCNN). As a proof of demonstration, FBG-based temperature sensor was utilized to conduct temperature measurement and over 1700 samples of the spectral raw data were recorded to train and validate the DCNN model. Using such method, the temperature information can be directly extracted from the experimentally obtained FBG spectra without any peak tracking algorithms. Since it makes full use of the information containing the full spectrum rather than only the central wavelength, it overcomes the limit of traditional fitting method and could improve the measurement accuracy of FBG effectively, which can reach 99.95% and its mean square error (MSE) is just 0.1080 °C, an order of magnitude less than that achieved by the traditional maximum peak method. The proposed method could reduce the need of high-performance hardware of equipment, whose accuracy can still maintain a high level when the sampling rate is reduced. Additionally, the universality of the method was experimentally demonstrated through the accurate demodulation of tilted FBG spectrum, and the relevant measurand can be retrieved directly from the entire spectrum instead of detecting the change of particular peaks. The proposed approach provides a cost-effective solution for the FBG based sensing system, and is promising for establishing sensing networks to implement smart monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时光宝石一次完成签到,获得积分10
刚刚
刚刚
wstki发布了新的文献求助10
1秒前
通通发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
kingwill举报万能的土豆求助涉嫌违规
1秒前
2秒前
2秒前
故酒应助科研通管家采纳,获得10
3秒前
故酒应助科研通管家采纳,获得10
3秒前
aldehyde应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
故酒应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
aldehyde应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
3秒前
华仔应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
Jenny发布了新的文献求助10
4秒前
kkk完成签到 ,获得积分10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
kxdxng发布了新的文献求助10
5秒前
摇摇奶昔发布了新的文献求助10
5秒前
5秒前
虫二发布了新的文献求助10
5秒前
目分发布了新的文献求助10
7秒前
听语说发布了新的文献求助30
7秒前
moon123发布了新的文献求助30
7秒前
7秒前
科研通AI6应助XX采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5528139
求助须知:如何正确求助?哪些是违规求助? 4617725
关于积分的说明 14560097
捐赠科研通 4556475
什么是DOI,文献DOI怎么找? 2496910
邀请新用户注册赠送积分活动 1477214
关于科研通互助平台的介绍 1448537