Spectral Demodulation of Fiber Bragg Grating Sensor Based on Deep Convolutional Neural Networks

解调 光纤布拉格光栅 计算机科学 卷积神经网络 电子工程 人工神经网络 光纤 光学 人工智能 电信 物理 工程类 频道(广播)
作者
Zihan Cao,Shengqi Zhang,Titi Xia,Zhengyong Liu,Zhaohui Li
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:40 (13): 4429-4435 被引量:34
标识
DOI:10.1109/jlt.2022.3155253
摘要

This paper presents a new method of demodulating the spectrum of fiber Bragg grating (FBG) based sensors by employing deep convolutional neural networks (DCNN). As a proof of demonstration, FBG-based temperature sensor was utilized to conduct temperature measurement and over 1700 samples of the spectral raw data were recorded to train and validate the DCNN model. Using such method, the temperature information can be directly extracted from the experimentally obtained FBG spectra without any peak tracking algorithms. Since it makes full use of the information containing the full spectrum rather than only the central wavelength, it overcomes the limit of traditional fitting method and could improve the measurement accuracy of FBG effectively, which can reach 99.95% and its mean square error (MSE) is just 0.1080 °C, an order of magnitude less than that achieved by the traditional maximum peak method. The proposed method could reduce the need of high-performance hardware of equipment, whose accuracy can still maintain a high level when the sampling rate is reduced. Additionally, the universality of the method was experimentally demonstrated through the accurate demodulation of tilted FBG spectrum, and the relevant measurand can be retrieved directly from the entire spectrum instead of detecting the change of particular peaks. The proposed approach provides a cost-effective solution for the FBG based sensing system, and is promising for establishing sensing networks to implement smart monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Honor发布了新的文献求助10
刚刚
刚刚
刚刚
远方完成签到,获得积分10
1秒前
科研通AI5应助Eason小川采纳,获得10
1秒前
斯文败类应助稳重老魏采纳,获得10
2秒前
2秒前
拼搏冥王星完成签到,获得积分10
3秒前
3秒前
Jasper应助cmy采纳,获得10
4秒前
辛束完成签到,获得积分10
4秒前
李霞客完成签到,获得积分10
4秒前
xiaoE完成签到,获得积分10
5秒前
anthea完成签到 ,获得积分10
5秒前
番薯圆完成签到,获得积分10
5秒前
科研小白发布了新的文献求助10
5秒前
kidult发布了新的文献求助10
5秒前
天真的乌完成签到 ,获得积分10
6秒前
酷波er应助Kra采纳,获得10
6秒前
嘚嘚发布了新的文献求助10
6秒前
踏实的惋庭完成签到,获得积分20
6秒前
Cao完成签到 ,获得积分10
6秒前
Hanmos3624完成签到,获得积分10
6秒前
工仔完成签到,获得积分10
8秒前
HX完成签到,获得积分10
8秒前
英姑应助Honor采纳,获得10
9秒前
Yan0909完成签到,获得积分10
10秒前
10秒前
汉堡包应助Hanmos3624采纳,获得10
11秒前
桂桂阿云发布了新的文献求助10
12秒前
dabihu发布了新的文献求助10
12秒前
俏皮的安萱给俏皮的安萱的求助进行了留言
13秒前
HX发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
14秒前
huntme发布了新的文献求助50
14秒前
xiaoshi完成签到,获得积分10
14秒前
随遇而安应助tesla采纳,获得10
15秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
On translated images, stereotypes and disciplines 200
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834344
求助须知:如何正确求助?哪些是违规求助? 3376864
关于积分的说明 10495644
捐赠科研通 3096375
什么是DOI,文献DOI怎么找? 1704930
邀请新用户注册赠送积分活动 820309
科研通“疑难数据库(出版商)”最低求助积分说明 771966