Aircraft robust data-driven multiple sensor fault diagnosis based on optimality criteria

稳健性(进化) 故障检测与隔离 冗余(工程) 故障覆盖率 控制理论(社会学) 计算机科学 算法 工程类 实时计算 可靠性工程 人工智能 控制(管理) 执行机构 电子线路 生物化学 化学 电气工程 基因
作者
Nicholas Cartocci,Marcello R. Napolitano,Gabriele Costante,Paolo Valigi,Mario Luca Fravolini
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:170: 108668-108668 被引量:26
标识
DOI:10.1016/j.ymssp.2021.108668
摘要

A general robust data-driven scheme for the Fault Detection, Isolation and Estimation of multiple sensor faults is proposed and validated using multi-flight data records. Robustness to modelling uncertainty and noise is achieved through an optimized data-driven design of the three blocks that constitute the scheme. First, a robust Fault Detection (FD) filter given by the linear combination of previously identified Analytical Redundancy Relationships (AARs) is derived as the solution of a multi-objective optimization where the minimum fault sensitivity is maximized while the standard deviation (STD) of the filtered error, in nominal condition, is minimized. Then, a Fault Pre-Isolation (FPI) block is introduced to select a restricted number of sensors containing with high likelihood the subset of the faulty sensors. In this phase, robustness is achieved through the data-driven design of a redundant number of Multiple-ARRs and a voting logic. Finally, the robust Fault Isolation (FI) is achieved relying on the design of a large collection of additional AARs whose fault signatures are specifically designed to optimize, at the same time, noise immunity while maximizing the decoupling of the (pre-isolated) fault directions. A procedure based on fault amplitude reconstruction is proposed to isolate the set of faulty sensors sequentially. The proposed scheme has been applied to the design of a multiple Fault Diagnosis scheme for a set of 8 sensors of a semi-autonomous aircraft basing on multi-flight data. Validation results are compared with state-of-the-art multiple Fault Diagnosis schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叉叉完成签到,获得积分10
2秒前
2秒前
2秒前
科研通AI5应助LiuZhe采纳,获得30
2秒前
ZRT134发布了新的文献求助10
4秒前
SYLH应助巴啦啦采纳,获得10
6秒前
ren80522发布了新的文献求助10
7秒前
邵洋发布了新的文献求助10
7秒前
孟奔奔完成签到,获得积分10
8秒前
田様应助糖糖糖采纳,获得10
8秒前
allia完成签到 ,获得积分10
9秒前
落后的凝梦完成签到 ,获得积分10
11秒前
大模型应助周周没烦恼采纳,获得10
11秒前
拓跋寡妇完成签到 ,获得积分10
12秒前
ren80522完成签到,获得积分10
12秒前
13秒前
明亮白筠完成签到,获得积分10
13秒前
Sue完成签到,获得积分10
14秒前
科研通AI5应助biogarfield采纳,获得10
15秒前
bake完成签到,获得积分10
15秒前
15秒前
明天要摆烂完成签到,获得积分10
16秒前
16秒前
16秒前
科研通AI5应助激情的歌曲采纳,获得10
16秒前
Yang22完成签到,获得积分10
17秒前
来活完成签到,获得积分10
17秒前
18秒前
科研通AI5应助萌兴采纳,获得10
18秒前
_呱_完成签到,获得积分10
19秒前
武雨珍发布了新的文献求助10
19秒前
19秒前
科研通AI2S应助best采纳,获得10
19秒前
科研通AI2S应助best采纳,获得10
19秒前
Allen发布了新的文献求助10
20秒前
耍酷蝴蝶发布了新的文献求助10
20秒前
20秒前
sb完成签到,获得积分10
21秒前
ZRT134完成签到,获得积分20
22秒前
Julia完成签到,获得积分10
23秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838631
求助须知:如何正确求助?哪些是违规求助? 3380977
关于积分的说明 10516605
捐赠科研通 3100547
什么是DOI,文献DOI怎么找? 1707583
邀请新用户注册赠送积分活动 821803
科研通“疑难数据库(出版商)”最低求助积分说明 772980