Early detection of hepatocellular carcinoma with methylation and fragmentation signatures of circulating tumour DNA: a prospective, multicentre, case-control, observational study

肝细胞癌 DNA甲基化 甲基化 医学 肝癌 肿瘤科 计算生物学 癌症研究 基因 生物 遗传学 基因表达
作者
Xin‐Rong Yang,Jian Zhou,Jia Fan,De‐Zhen Guo,Ao Huang,Chengcheng Ma,Minjie Xu,Wei Li,Zhixi Su
出处
期刊:Lancet Oncology [Elsevier BV]
卷期号:23: S15-S15 被引量:2
标识
DOI:10.1016/s1470-2045(22)00414-4
摘要

Hepatocellular carcinoma is one of the deadliest cancers worldwide. Early detection has been shown to enable more effective treatments, thus decreasing morbidity and mortality. Non-invasive cancer detection via circulating tumour DNA (ctDNA) has emerged as a promising approach to monitor the molecular changes in liver tumour cells. We aimed to use ctDNA methylation and fragmentation signals to develop a blood-based assay for hepatocellular carcinoma early detection, named HcSeer.A targeted methylation sequencing panel was designed to integrate 1601 liver cancer-informative methylation markers, on the basis of in-house data and data from the public databases The Cancer Genome Atlas and Gene Expression Omnibus. Various methylation features were constructed from methylation sequencing data, including methylation haplotype load and methylated haplotype fraction. Low-pass whole-genome sequencing data from plasma samples were also analysed at a mean sequencing depth of 10×. Fragmentomic features, such as end motif, breakpoint motif, fragmentation size ratio, and copy number variation, were extracted from whole-genome sequencing data. A two-step deep neural network model was built to classify cancer and healthy samples with selected features of both types. The robustness of entire approach was verified with a 3× cross-validation by randomly splitting samples into training set and test set at a 2:1 ratio.In the discovery phase, a case-control study was designed to develop the HcSeer assay for the early detection of hepatocellular carcinoma. A total of 401 participants were recruited (200 healthy individuals and 201 patients with hepatocellular carcinoma). Most patients with cancer were at early stages standardised by Chinese liver cancer staging (109 [54%] at stage I and 25 [12%] at stage II). The classification model of HcSeer assay was built and cross-validated to achieve an average area under the curve of 0·99 (sensitivity 94% [189 of 201; 95% CI 90-97%] and specificity 96% [192 of 200; 92-98%]). The detection accuracy was observed to increase with cancer stages, with 91% (99 of 109; 95% CI 83-95%) sensitivity for stage I, 96% (24 of 25; 77-100%) for stage II, 98% (43 of 44; 86-100%) for stage III, and 100% (23 of 23, 84-100%) for stage IV. The validation cohort is ongoing, with the aim of reaching 510 plasma samples from multiple centres, including a full spectrum of liver diseases and age-matched healthy controls. The validation phase is expected to be completed in June, 2022.We have developed the HcSeer assay to combine the signatures of DNA methylation and genome-wide fragmentome. In a case-control study, we showed its feasibility to detect early-stage hepatocellular carcinoma with high accuracy. We propose it as a potential aid for non-invasive diagnostics of hepatocellular carcinoma. The performance of the assay is being validated in an independent sample set collected through a multicentre study, which was approved by the Ethical Committee of Zhongshan Hospital affiliated to Fudan University (number B2020-299R).This study was supported by the National Key Research and Development Program of China (grant number 2019YFC1315800).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助科研通管家采纳,获得10
14秒前
123567完成签到 ,获得积分10
14秒前
极品小亮完成签到,获得积分10
15秒前
拼搏的帽子完成签到 ,获得积分10
15秒前
Owen应助ben采纳,获得10
23秒前
31秒前
ben发布了新的文献求助10
36秒前
程负暄完成签到 ,获得积分10
46秒前
美丽心情完成签到,获得积分10
52秒前
泡泡茶壶o完成签到 ,获得积分10
54秒前
南风完成签到 ,获得积分10
56秒前
丑小鸭完成签到 ,获得积分10
56秒前
下文献的蜉蝣完成签到 ,获得积分10
56秒前
mama完成签到 ,获得积分10
1分钟前
凶狠的储完成签到,获得积分10
1分钟前
提莫silence完成签到 ,获得积分0
1分钟前
yellowonion完成签到 ,获得积分10
1分钟前
nan完成签到,获得积分10
1分钟前
kenchilie完成签到 ,获得积分10
1分钟前
Lyw完成签到 ,获得积分10
1分钟前
胡图图完成签到 ,获得积分10
1分钟前
ymxlcfc完成签到 ,获得积分10
1分钟前
大可完成签到 ,获得积分10
1分钟前
林好人发布了新的文献求助10
1分钟前
沉默的婴完成签到 ,获得积分10
1分钟前
Raymond完成签到,获得积分10
1分钟前
lilylian完成签到,获得积分10
1分钟前
xiaoblue完成签到,获得积分10
1分钟前
充电宝应助Sunny采纳,获得10
2分钟前
寂寞致幻完成签到,获得积分10
2分钟前
桃子完成签到 ,获得积分10
2分钟前
3927456843应助科研通管家采纳,获得20
2分钟前
3927456843应助科研通管家采纳,获得20
2分钟前
2分钟前
称心的高丽完成签到 ,获得积分10
2分钟前
popo6150完成签到 ,获得积分10
2分钟前
Sunny发布了新的文献求助10
2分钟前
CipherSage应助寂寞致幻采纳,获得10
2分钟前
呆呆的猕猴桃完成签到 ,获得积分10
2分钟前
rover完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4774303
求助须知:如何正确求助?哪些是违规求助? 4107307
关于积分的说明 12704885
捐赠科研通 3828099
什么是DOI,文献DOI怎么找? 2111924
邀请新用户注册赠送积分活动 1135871
关于科研通互助平台的介绍 1019314