Computer‐assisted cytologic diagnosis in pancreatic FNA: An application of neural networks to image analysis

医学 细针穿刺 放射科 活检 细胞学 聚类分析 人工智能 病理 计算机科学
作者
Amir Momeni Boroujeni,Elham Yousefi,Jonathan Somma
出处
期刊:Cancer Cytopathology [Wiley]
卷期号:125 (12): 926-933 被引量:45
标识
DOI:10.1002/cncy.21915
摘要

BACKGROUND Fine‐needle aspiration (FNA) biopsy is an accurate method for the diagnosis of solid pancreatic masses. However, a significant number of cases still pose a diagnostic challenge. The authors have attempted to design a computer model to aid in the diagnosis of these biopsies. METHODS Images were captured of cell clusters on ThinPrep slides from 75 pancreatic FNA cases (20 malignant, 24 benign, and 31 atypical). A K‐means clustering algorithm was used to segment the cell clusters into separable regions of interest before extracting features similar to those used for cytomorphologic assessment. A multilayer perceptron neural network (MNN) was trained and then tested for its ability to distinguish benign from malignant cases. RESULTS A total of 277 images of cell clusters were obtained. K‐means clustering identified 68,301 possible regions of interest overall. Features such as contour, perimeter, and area were found to be significantly different between malignant and benign images ( P <.05). The MNN was 100% accurate for benign and malignant categories. The model's predictions from the atypical data set were 77% accurate. CONCLUSIONS The results of the current study demonstrate that computer models can be used successfully to distinguish benign from malignant pancreatic cytology. The fact that the model can categorize atypical cases into benign or malignant with 77% accuracy highlights the great potential of this technology. Although further study is warranted to validate its clinical applications in pancreatic and perhaps other areas of cytology as well, the potential for improved patient outcomes using MNN for image analysis in pathology is significant. Cancer Cytopathol 2017;125:926‐33 . © 2017 American Cancer Society .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
dery完成签到,获得积分10
19秒前
lhl完成签到,获得积分10
21秒前
小白完成签到 ,获得积分10
26秒前
乐悠悠完成签到 ,获得积分10
32秒前
柯伊达完成签到 ,获得积分10
34秒前
36秒前
酷酷的树叶完成签到 ,获得积分10
38秒前
loren313完成签到,获得积分0
41秒前
Thunnus001完成签到,获得积分10
51秒前
KK完成签到 ,获得积分10
1分钟前
虞无声完成签到,获得积分10
1分钟前
含糊的无声完成签到 ,获得积分10
1分钟前
kangkang完成签到 ,获得积分10
1分钟前
Chem34完成签到,获得积分10
1分钟前
调皮从筠完成签到 ,获得积分10
1分钟前
hbpu230701完成签到,获得积分0
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
xiaofeixia完成签到 ,获得积分10
1分钟前
又又完成签到,获得积分10
1分钟前
lilylian完成签到,获得积分10
1分钟前
ira完成签到,获得积分10
1分钟前
Muncy完成签到 ,获得积分10
1分钟前
life的半边天完成签到 ,获得积分10
1分钟前
violetlishu完成签到 ,获得积分10
2分钟前
糖宝完成签到 ,获得积分10
2分钟前
hhh2018687完成签到,获得积分10
2分钟前
骨科小白完成签到 ,获得积分10
2分钟前
复杂的可乐完成签到 ,获得积分10
2分钟前
无语的冰淇淋完成签到 ,获得积分10
2分钟前
2分钟前
Tony完成签到,获得积分10
2分钟前
2分钟前
zsygt完成签到,获得积分10
2分钟前
无奈的萍发布了新的文献求助10
2分钟前
情怀应助无奈的萍采纳,获得10
2分钟前
zsygt发布了新的文献求助10
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779209
求助须知:如何正确求助?哪些是违规求助? 3324802
关于积分的说明 10219909
捐赠科研通 3039903
什么是DOI,文献DOI怎么找? 1668514
邀请新用户注册赠送积分活动 798702
科研通“疑难数据库(出版商)”最低求助积分说明 758503