Fault diagnosis of rolling bearings with recurrent neural network-based autoencoders

自编码 循环神经网络 人工智能 人工神经网络 降噪 断层(地质) 噪音(视频) 计算机科学 一般化 工程类 模式识别(心理学) 方位(导航) 数学 数学分析 地震学 地质学 图像(数学)
作者
Han Liu,Jianzhong Zhou,Yang Zheng,Wei Jiang,Yuncheng Zhang
出处
期刊:Isa Transactions [Elsevier BV]
卷期号:77: 167-178 被引量:494
标识
DOI:10.1016/j.isatra.2018.04.005
摘要

As the rolling bearings being the key part of rotary machine, its healthy condition is quite important for safety production. Fault diagnosis of rolling bearing has been research focus for the sake of improving the economic efficiency and guaranteeing the operation security. However, the collected signals are mixed with ambient noise during the operation of rotary machine, which brings great challenge to the exact diagnosis results. Using signals collected from multiple sensors can avoid the loss of local information and extract more helpful characteristics. Recurrent Neural Networks (RNN) is a type of artificial neural network which can deal with multiple time sequence data. The capacity of RNN has been proved outstanding for catching time relevance about time sequence data. This paper proposed a novel method for bearing fault diagnosis with RNN in the form of an autoencoder. In this approach, multiple vibration value of the rolling bearings of the next period are predicted from the previous period by means of Gated Recurrent Unit (GRU)-based denoising autoencoder. These GRU-based non-linear predictive denoising autoencoders (GRU-NP-DAEs) are trained with strong generalization ability for each different fault pattern. Then for the given input data, the reconstruction errors between the next period data and the output data generated by different GRU-NP-DAEs are used to detect anomalous conditions and classify fault type. Classic rotating machinery datasets have been employed to testify the effectiveness of the proposed diagnosis method and its preponderance over some state-of-the-art methods. The experiment results indicate that the proposed method achieves satisfactory performance with strong robustness and high classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jcl完成签到,获得积分10
1秒前
大模型应助Dceer采纳,获得10
1秒前
2秒前
NexusExplorer应助如意元霜采纳,获得10
2秒前
syx发布了新的文献求助10
2秒前
初四完成签到,获得积分10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
赤恩应助科研通管家采纳,获得10
2秒前
yangdoudou应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
李紫硕应助科研通管家采纳,获得50
2秒前
2秒前
2秒前
Owen应助科研通管家采纳,获得10
3秒前
3秒前
申左一发布了新的文献求助10
3秒前
鳗鱼绿蝶发布了新的文献求助10
3秒前
CipherSage应助mao采纳,获得10
5秒前
chaochao完成签到,获得积分10
5秒前
znlion发布了新的文献求助10
6秒前
6秒前
布可完成签到,获得积分10
6秒前
7秒前
8秒前
skylee9527发布了新的文献求助10
8秒前
田様应助Luna采纳,获得10
9秒前
结实凌瑶完成签到 ,获得积分10
9秒前
执着的酒窝完成签到,获得积分10
10秒前
kingwill举报Duranta求助涉嫌违规
13秒前
如意元霜发布了新的文献求助10
14秒前
16秒前
16秒前
17秒前
友好的天奇完成签到,获得积分10
19秒前
mao发布了新的文献求助10
20秒前
Xixicccccccc发布了新的文献求助10
20秒前
20秒前
伤逝完成签到 ,获得积分10
21秒前
孟筱发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4439726
求助须知:如何正确求助?哪些是违规求助? 3912141
关于积分的说明 12150220
捐赠科研通 3559277
什么是DOI,文献DOI怎么找? 1953785
邀请新用户注册赠送积分活动 993543
科研通“疑难数据库(出版商)”最低求助积分说明 888960