Neopepsee: accurate genome-level prediction of neoantigens by harnessing sequence and amino acid immunogenicity information

免疫原性 计算生物学 表位 医学 癌症免疫疗法 癌症 免疫疗法 生物 免疫学 抗原 内科学
作者
Sangwoo Kim,Han Sang Kim,Eun‐Young Kim,Min Goo Lee,E.-C. Shin,Soonmyung Paik,Sangwoo Kim
出处
期刊:Annals of Oncology [Elsevier]
卷期号:29 (4): 1030-1036 被引量:145
标识
DOI:10.1093/annonc/mdy022
摘要

Abstract Background Tumor-specific mutations form novel immunogenic peptides called neoantigens. Neoantigens can be used as a biomarker predicting patient response to cancer immunotherapy. Although a predicted binding affinity (IC50) between peptide and major histocompatibility complex class I is currently used for neoantigen prediction, large number of false-positives exist. Materials and methods We developed Neopepsee, a machine-learning-based neoantigen prediction program for next-generation sequencing data. With raw RNA-seq data and a list of somatic mutations, Neopepsee automatically extracts mutated peptide sequences and gene expression levels. We tested 14 immunogenicity features to construct a machine-learning classifier and compared with the conventional methods based on IC50 regarding sensitivity and specificity. We tested Neopepsee on independent datasets from melanoma, leukemia, and stomach cancer. Results Nine of the 14 immunogenicity features that are informative and inter-independent were used to construct the machine-learning classifiers. Neopepsee provides a rich annotation of candidate peptides with 87 immunogenicity-related values, including IC50, expression levels of neopeptides and immune regulatory genes (e.g. PD1, PD-L1), matched epitope sequences, and a three-level (high, medium, and low) call for neoantigen probability. Compared with the conventional methods, the performance was improved in sensitivity and especially two- to threefold in the specificity. Tests with validated datasets and independently proven neoantigens confirmed the improved performance in melanoma and chronic lymphocytic leukemia. Additionally, we found sequence similarity in proteins to known pathogenic epitopes to be a novel feature in classification. Application of Neopepsee to 224 public stomach adenocarcinoma datasets predicted ∼7 neoantigens per patient, the burden of which was correlated with patient prognosis. Conclusions Neopepsee can detect neoantigen candidates with less false positives and be used to determine the prognosis of the patient. We expect that retrieval of neoantigen sequences with Neopepsee will help advance research on next-generation cancer immunotherapies, predictive biomarkers, and personalized cancer vaccines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助九霄采纳,获得10
刚刚
刚刚
帅气的秘密完成签到,获得积分10
刚刚
刚刚
xiangkk完成签到,获得积分10
刚刚
七七发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
小伍同学发布了新的文献求助10
3秒前
jiujiujiujiu完成签到,获得积分10
3秒前
烟花应助哈哈哈哈采纳,获得10
3秒前
小马发布了新的文献求助10
3秒前
3秒前
eo完成签到 ,获得积分10
4秒前
夕荀发布了新的文献求助10
4秒前
4秒前
爱库珀发布了新的文献求助10
5秒前
6秒前
白紫莹发布了新的文献求助10
7秒前
Sj泽发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
柯米克应助嘉树林采纳,获得10
7秒前
hellobaboon发布了新的文献求助10
8秒前
8秒前
9秒前
流云发布了新的文献求助10
9秒前
9秒前
隐形曼青应助123采纳,获得10
9秒前
慕青应助生菜采纳,获得10
9秒前
房梦寒完成签到,获得积分10
10秒前
西瓜完成签到,获得积分10
10秒前
虚拟的凡波完成签到,获得积分20
10秒前
麗会水逆退散完成签到,获得积分10
10秒前
10秒前
11秒前
科研通AI6应助今晚吃什么采纳,获得10
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609352
求助须知:如何正确求助?哪些是违规求助? 4693995
关于积分的说明 14880487
捐赠科研通 4719464
什么是DOI,文献DOI怎么找? 2544710
邀请新用户注册赠送积分活动 1509646
关于科研通互助平台的介绍 1472950