Thermal Modeling in Metal Additive Manufacturing Using Graph Theory

图像扭曲 有限元法 过程(计算) 热的 计算机科学 开裂 图形 工作(物理) 机械工程 分布(数学) 数学优化 算法 材料科学 数学 工程类 理论计算机科学 结构工程 人工智能 热力学 数学分析 操作系统 物理 复合材料
作者
Mohammad Reza Yavari,Kevin D. Cole,Prahalada Rao
出处
期刊:Journal of Manufacturing Science and Engineering-transactions of The Asme [ASM International]
卷期号:141 (7) 被引量:57
标识
DOI:10.1115/1.4043648
摘要

Abstract The goal of this work is to predict the effect of part geometry and process parameters on the instantaneous spatiotemporal distribution of temperature, also called the thermal field or temperature history, in metal parts as they are being built layer-by-layer using additive manufacturing (AM) processes. In pursuit of this goal, the objective of this work is to develop and verify a graph theory-based approach for predicting the temperature distribution in metal AM parts. This objective is consequential to overcome the current poor process consistency and part quality in AM. One of the main reasons for poor part quality in metal AM processes is ascribed to the nature of temperature distribution in the part. For instance, steep thermal gradients created in the part during printing leads to defects, such as warping and thermal stress-induced cracking. Existing nonproprietary approaches to predict the temperature distribution in AM parts predominantly use mesh-based finite element analyses that are computationally tortuous—the simulation of a few layers typically requires several hours, if not days. Hence, to alleviate these challenges in metal AM processes, there is a need for efficient computational models to predict the temperature distribution, and thereby guide part design and selection of process parameters instead of expensive empirical testing. Compared with finite element analyses techniques, the proposed mesh-free graph theory-based approach facilitates prediction of the temperature distribution within a few minutes on a desktop computer. To explore these assertions, we conducted the following two studies: (1) comparing the heat diffusion trends predicted using the graph theory approach with finite element analysis, and analytical heat transfer calculations based on Green’s functions for an elementary cuboid geometry which is subjected to an impulse heat input in a certain part of its volume and (2) simulating the laser powder bed fusion metal AM of three-part geometries with (a) Goldak’s moving heat source finite element method, (b) the proposed graph theory approach, and (c) further comparing the thermal trends predicted from the last two approaches with a commercial solution. From the first study, we report that the thermal trends approximated by the graph theory approach are found to be accurate within 5% of the Green’s functions-based analytical solution (in terms of the symmetric mean absolute percentage error). Results from the second study show that the thermal trends predicted for the AM parts using graph theory approach agree with finite element analyses, and the computational time for predicting the temperature distribution was significantly reduced with graph theory. For instance, for one of the AM part geometries studied, the temperature trends were predicted in less than 18 min within 10% error using the graph theory approach compared with over 180 min with finite element analyses. Although this paper is restricted to theoretical development and verification of the graph theory approach, our forthcoming research will focus on experimental validation through in-process thermal measurements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助Elcric采纳,获得30
1秒前
152完成签到 ,获得积分10
1秒前
Realrr完成签到 ,获得积分10
1秒前
2秒前
juzi完成签到 ,获得积分10
5秒前
qiao应助AA采纳,获得10
8秒前
9秒前
11秒前
11秒前
冷笑完成签到,获得积分10
11秒前
怡然幻然完成签到,获得积分10
13秒前
光亮向雁发布了新的文献求助10
13秒前
pluto应助糟糕的铁锤采纳,获得50
15秒前
16秒前
Lucas应助科研通管家采纳,获得10
20秒前
传奇3应助科研通管家采纳,获得10
20秒前
CodeCraft应助科研通管家采纳,获得10
20秒前
大模型应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得30
20秒前
Jasper应助科研通管家采纳,获得10
20秒前
情怀应助科研通管家采纳,获得20
20秒前
雨夜星空应助科研通管家采纳,获得20
20秒前
JamesPei应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
ding应助科研通管家采纳,获得10
21秒前
酷波er应助科研通管家采纳,获得10
21秒前
华仔应助科研通管家采纳,获得10
21秒前
星辰大海应助科研通管家采纳,获得10
21秒前
Ava应助科研通管家采纳,获得10
21秒前
上官若男应助科研通管家采纳,获得10
21秒前
斯文败类应助科研通管家采纳,获得10
21秒前
Lucas应助科研通管家采纳,获得10
21秒前
21秒前
科研通AI5应助科研通管家采纳,获得30
21秒前
露珠完成签到,获得积分10
22秒前
GYH完成签到,获得积分10
24秒前
24秒前
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776680
求助须知:如何正确求助?哪些是违规求助? 3322161
关于积分的说明 10208892
捐赠科研通 3037360
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797614
科研通“疑难数据库(出版商)”最低求助积分说明 757921